Filip Wudarski
Ph. D. in Physics || Quantum Computing Expert || Ex-NASA scientist || Quantum Machine Learning || AI || Quantum Simulations
Research Expertise
About
Publications
Non-Markovian random unitary qubit dynamics
Physics Letters A / Sep 01, 2013
Chruściński, D., & Wudarski, F. A. (2013). Non-Markovian random unitary qubit dynamics. Physics Letters A, 377(21–22), 1425–1429. https://doi.org/10.1016/j.physleta.2013.04.020
Non-Markovianity degree for random unitary evolution
Physical Review A / Jan 13, 2015
Chruściński, D., & Wudarski, F. A. (2015). Non-Markovianity degree for random unitary evolution. Physical Review A, 91(1). https://doi.org/10.1103/physreva.91.012104
Optimizing quantum heuristics with meta-learning
Quantum Machine Intelligence / Apr 13, 2021
Wilson, M., Stromswold, R., Wudarski, F., Hadfield, S., Tubman, N. M., & Rieffel, E. G. (2021). Optimizing quantum heuristics with meta-learning. Quantum Machine Intelligence, 3(1). https://doi.org/10.1007/s42484-020-00022-w
Real-Time Evolution for Ultracompact Hamiltonian Eigenstates on Quantum Hardware
PRX Quantum / May 03, 2022
Klymko, K., Mejuto-Zaera, C., Cotton, S. J., Wudarski, F., Urbanek, M., Hait, D., Head-Gordon, M., Whaley, K. B., Moussa, J., Wiebe, N., de Jong, W. A., & Tubman, N. M. (2022). Real-Time Evolution for Ultracompact Hamiltonian Eigenstates on Quantum Hardware. PRX Quantum, 3(2). https://doi.org/10.1103/prxquantum.3.020323
Entanglement across separate silicon dies in a modular superconducting qubit device
npj Quantum Information / Sep 28, 2021
Gold, A., Paquette, J. P., Stockklauser, A., Reagor, M. J., Alam, M. S., Bestwick, A., Didier, N., Nersisyan, A., Oruc, F., Razavi, A., Scharmann, B., Sete, E. A., Sur, B., Venturelli, D., Winkleblack, C. J., Wudarski, F., Harburn, M., & Rigetti, C. (2021). Entanglement across separate silicon dies in a modular superconducting qubit device. Npj Quantum Information, 7(1). https://doi.org/10.1038/s41534-021-00484-1
Characterizing local noise in QAOA circuits
IOP SciNotes / Aug 28, 2020
Marshall, J., Wudarski, F., Hadfield, S., & Hogg, T. (2020). Characterizing local noise in QAOA circuits. IOP SciNotes, 1(2), 025208. https://doi.org/10.1088/2633-1357/abb0d7
Admissible memory kernels for random unitary qubit evolution
Physical Review A / Apr 07, 2015
Wudarski, F. A., Należyty, P., Sarbicki, G., & Chruściński, D. (2015). Admissible memory kernels for random unitary qubit evolution. Physical Review A, 91(4). https://doi.org/10.1103/physreva.91.042105
Markovian semigroup from non-Markovian evolutions
Physical Review A / Apr 26, 2016
Wudarski, F. A., & Chruściński, D. (2016). Markovian semigroup from non-Markovian evolutions. Physical Review A, 93(4). https://doi.org/10.1103/physreva.93.042120
Entanglement witnesses from mutually unbiased bases
Physical Review A / Mar 16, 2018
Chruściński, D., Sarbicki, G., & Wudarski, F. (2018). Entanglement witnesses from mutually unbiased bases. Physical Review A, 97(3). https://doi.org/10.1103/physreva.97.032318
Geometry of Entanglement Witnesses for Two Qutrits
Open Systems & Information Dynamics / Dec 01, 2011
Chruściński, D., & Wudarski, F. A. (2011). Geometry of Entanglement Witnesses for Two Qutrits. Open Systems & Information Dynamics, 18(04), 375–387. https://doi.org/10.1142/s1230161211000261
Quantum algorithms with local particle-number conservation: Noise effects and error correction
Physical Review A / Apr 13, 2021
Streif, M., Leib, M., Wudarski, F., Rieffel, E., & Wang, Z. (2021). Quantum algorithms with local particle-number conservation: Noise effects and error correction. Physical Review A, 103(4). https://doi.org/10.1103/physreva.103.042412
Entanglement production and convergence properties of the variational quantum eigensolver
Physical Review A / Oct 09, 2020
Woitzik, A. J. C., Barkoutsos, P. Kl., Wudarski, F., Buchleitner, A., & Tavernelli, I. (2020). Entanglement production and convergence properties of the variational quantum eigensolver. Physical Review A, 102(4). https://doi.org/10.1103/physreva.102.042402
From Ansätze to Z-Gates: A NASA View of Quantum Computing
Future Trends of HPC in a Disruptive Scenario / Sep 09, 2019
Rieffel, E. G., Hadfield, S., Hogg, T., Mandrà, S., Marshall, J., Mossi, G., O’Gorman, B., Plamadeala, E., Tubman, N. M., Venturelli, D., Vinci, W., Wang, Z., Wilson, M., Wudarski, F., & Biswas, R. (2019). From Ansätze to Z-Gates: A NASA View of Quantum Computing. In Advances in Parallel Computing. IOS Press. https://doi.org/10.3233/apc190010
Experimental investigation of Markovian and non-Markovian channel addition
Physical Review A / May 11, 2020
Uriri, S. A., Wudarski, F., Sinayskiy, I., Petruccione, F., & Tame, M. S. (2020). Experimental investigation of Markovian and non-Markovian channel addition. Physical Review A, 101(5). https://doi.org/10.1103/physreva.101.052107
Neural network ansatz for periodic wave functions and the homogeneous electron gas
Physical Review B / Jun 21, 2023
Wilson, M., Moroni, S., Holzmann, M., Gao, N., Wudarski, F., Vegge, T., & Bhowmik, A. (2023). Neural network ansatz for periodic wave functions and the homogeneous electron gas. Physical Review B, 107(23). https://doi.org/10.1103/physrevb.107.235139
Two-Unitary Decomposition Algorithm and Open Quantum System Simulation
Quantum / May 15, 2023
Suri, N., Barreto, J., Hadfield, S., Wiebe, N., Wudarski, F., & Marshall, J. (2023). Two-Unitary Decomposition Algorithm and Open Quantum System Simulation. Quantum, 7, 1002. CLOCKSS. https://doi.org/10.22331/q-2023-05-15-1002
Output statistics of quantum annealers with disorder
Physical Review A / Apr 12, 2022
Brugger, J., Seidel, C., Streif, M., Wudarski, F. A., Dittel, C., & Buchleitner, A. (2022). Output statistics of quantum annealers with disorder. Physical Review A, 105(4). https://doi.org/10.1103/physreva.105.042605
Exchange of information between system and environment: Facts and myths
EPL (Europhysics Letters) / Mar 01, 2016
Wudarski, F. A., & Petruccione, F. (2016). Exchange of information between system and environment: Facts and myths. EPL (Europhysics Letters), 113(5), 50001. https://doi.org/10.1209/0295-5075/113/50001
Channel Coding of a Quantum Measurement
IEEE Journal on Selected Areas in Communications / Mar 01, 2020
Kechrimparis, S., Kropf, C. M., Wudarski, F., & Bae, J. (2020). Channel Coding of a Quantum Measurement. IEEE Journal on Selected Areas in Communications, 38(3), 439–448. https://doi.org/10.1109/jsac.2020.2969034
Geometry of Entanglement Witnesses Parametrized by SO(3) Group
Open Systems & Information Dynamics / Sep 01, 2012
Chruściński, D., & Wudarski, F. A. (2012). Geometry of Entanglement Witnesses Parametrized by <font>SO</font>(3) Group. Open Systems & Information Dynamics, 19(03), 1250020. https://doi.org/10.1142/s1230161212500205
Characterizing Low-Frequency Qubit Noise
Physical Review Applied / Jun 22, 2023
Wudarski, F., Zhang, Y., Korotkov, A. N., Petukhov, A. G., & Dykman, M. I. (2023). Characterizing Low-Frequency Qubit Noise. Physical Review Applied, 19(6). https://doi.org/10.1103/physrevapplied.19.064066
Class of Bell-diagonal entanglement
witnesses in
C 4 ⊗ C 4
: Optimization and the spanning property
Physical Review A / May 02, 2022
Bera, A., Wudarski, F. A., Sarbicki, G., & Chruściński, D. (2022). Class of Bell-diagonal entanglement witnesses in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msup><mml:mi mathvariant="double-struck">C</mml:mi><mml:mn>4</mml:mn></mml:msup><mml:mo>⊗</mml:mo><mml:msup><mml:mi mathvariant="double-struck">C</mml:mi><mml:mn>4</mml:mn></mml:msup></mml:mrow></mml:math> : Optimization and the spanning property. Physical Review A, 105(5). https://doi.org/10.1103/physreva.105.052401
Practical Verification of Quantum Properties in Quantum-Approximate-Optimization Runs
Physical Review Applied / Feb 09, 2022
Alam, M. S., Wudarski, F. A., Reagor, M. J., Sud, J., Grabbe, S., Wang, Z., Hodson, M., Lott, P. A., Rieffel, E. G., & Venturelli, D. (2022). Practical Verification of Quantum Properties in Quantum-Approximate-Optimization Runs. Physical Review Applied, 17(2). https://doi.org/10.1103/physrevapplied.17.024026
Robustness and fragility of Markovian dynamics in a qubit dephasing channel
Physical Review A / May 30, 2017
Wudarski, F. A., & Petruccione, F. (2017). Robustness and fragility of Markovian dynamics in a qubit dephasing channel. Physical Review A, 95(5). https://doi.org/10.1103/physreva.95.052130
Augmented fidelities for single-qubit gates
Physical Review A / Nov 12, 2020
Wudarski, F., Marshall, J., Petukhov, A., & Rieffel, E. (2020). Augmented fidelities for single-qubit gates. Physical Review A, 102(5). https://doi.org/10.1103/physreva.102.052612
Nonergodic Measurements of Qubit Frequency Noise
Physical Review Letters / Dec 06, 2023
Wudarski, F., Zhang, Y., & Dykman, M. I. (2023). Nonergodic Measurements of Qubit Frequency Noise. Physical Review Letters, 131(23). https://doi.org/10.1103/physrevlett.131.230201
Dual-map framework for noise characterization of quantum computers
Physical Review A / Jul 15, 2022
Sud, J., Marshall, J., Wang, Z., Rieffel, E., & Wudarski, F. A. (2022). Dual-map framework for noise characterization of quantum computers. Physical Review A, 106(1). https://doi.org/10.1103/physreva.106.012606
Erratum to “Channel Coding of a Quantum Measurement”
IEEE Journal on Selected Areas in Communications / May 01, 2020
Kechrimparis, S., Kropf, C. M., Wudarski, F., & Bae, J. (2020). Erratum to “Channel Coding of a Quantum Measurement.” IEEE Journal on Selected Areas in Communications, 38(5), 980–980. https://doi.org/10.1109/jsac.2020.2988138
Education
Nicolaus Copernicus University
Ph. D., Physics / June, 2015
Nicolaus Copernicus University
M.Sc., Physics / June, 2011
Nicolaus Copernicus University
B. Sc., Chemistry / June, 2009
Experience
USRA and NASA QuAIL
Associate Scientists / March, 2019 — January, 2021
As a member of NASA QuAIL team I focused on research in: benchmarking quantum hardware and algorithms, building noise models for quantum circuits, developing novel quantum algorithms, investigated properties of variational quantum algorithms. Additionally, I was actively contributing in writing grant proposals, supervision of interns (grad and undergrad students), and collaboration with industrial partners (e.g. Google, IBM, Rigetti).
Scientist / January, 2021 — October, 2022
Continued to work on various topics in the field of quantum computing, like: building machine learning models for quantum chemistry, developed new quantum algorithms, simulated quantum systems and quantum circuits. Supervised interns and applied for research grants.
USRA
Scientist / November, 2022 — Present
Developed quantum machine learning models for modeling chaotic systems, in particular proposed and tested (both in classical simulation and quantum simulation) a hybrid quantum reservoir computing algorithm.
University of KwaZulu-Natal
NITheP Postdoctoral Fellow / September, 2015 — February, 2017
Characterized (non-)Markovian dynamics of open quantum systems. Proposed a photonic experiment for testing non-convex mixing of open quantum systems dynamics that later was realized at UKZN. Prepared and conducted lecture and tutorials for undergraduate students.
University of Freiburg
Visiting Researched / March, 2017 — February, 2019
Visited the group of Prof. Buchleitner as a winner of Mobility Plus grant awarded by Polish Ministry of Higher Education. During my 2 years stay I investigated entanglement properties of variational quantum eigensolver (in collaboration with IBM Zurich), as well as statistical properties of the D-Wave quantum annealer (in collaboration with VW DataLab). Additionally, I continued investigating properties of entanglement witnesses and open quantum systems. I conducted tutorials for Master's students. During my visit I co-supervised Bachelor's and Master's students.
Join Filip on NotedSource!
Join Now
At NotedSource, we believe that professors, post-docs, scientists and other researchers have deep, untapped knowledge and expertise that can be leveraged to drive innovation within companies. NotedSource is committed to bridging the gap between academia and industry by providing a platform for collaboration with industry and networking with other researchers.
For industry, NotedSource identifies the right academic experts in 24 hours to help organizations build and grow. With a platform of thousands of knowledgeable PhDs, scientists, and industry experts, NotedSource makes connecting and collaborating easy.
For academic researchers such as professors, post-docs, and Ph.D.s, NotedSource provides tools to discover and connect to your colleagues with messaging and news feeds, in addition to the opportunity to be paid for your collaboration with vetted partners.
Expert Institutions




Proudly trusted by





