Carsten Eickhoff, Ph.D.
Professor | Scientific Director | Founder | Board Member | Expert in Natural Language Processing and AI
Research Expertise
About
Publications
A Transformer-based Framework for Multivariate Time Series Representation Learning
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining / Aug 14, 2021
Zerveas, G., Jayaraman, S., Patel, D., Bhamidipaty, A., & Eickhoff, C. (2021). A Transformer-based Framework for Multivariate Time Series Representation Learning. Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, 2114–2124. https://doi.org/10.1145/3447548.3467401
Machine learning for real-time prediction of complications in critical care: a retrospective study
The Lancet Respiratory Medicine / Dec 01, 2018
Meyer, A., Zverinski, D., Pfahringer, B., Kempfert, J., Kuehne, T., Sündermann, S. H., Stamm, C., Hofmann, T., Falk, V., & Eickhoff, C. (2018). Machine learning for real-time prediction of complications in critical care: a retrospective study. The Lancet Respiratory Medicine, 6(12), 905–914. https://doi.org/10.1016/s2213-2600(18)30300-x
Quality through flow and immersion
Proceedings of the 35th international ACM SIGIR conference on Research and development in information retrieval / Aug 12, 2012
Eickhoff, C., Harris, C. G., de Vries, A. P., & Srinivasan, P. (2012). Quality through flow and immersion: gamifying crowdsourced relevance assessments. Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, 871–880. https://doi.org/10.1145/2348283.2348400
Increasing cheat robustness of crowdsourcing tasks
Information Retrieval / Feb 14, 2012
Eickhoff, C., & de Vries, A. P. (2012). Increasing cheat robustness of crowdsourcing tasks. Information Retrieval, 16(2), 121–137. https://doi.org/10.1007/s10791-011-9181-9
Cognitive Biases in Crowdsourcing
Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining / Feb 02, 2018
Eickhoff, C. (2018). Cognitive Biases in Crowdsourcing. Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, 162–170. https://doi.org/10.1145/3159652.3159654
Lessons from the journey
Proceedings of the 7th ACM international conference on Web search and data mining / Feb 24, 2014
Eickhoff, C., Teevan, J., White, R., & Dumais, S. (2014). Lessons from the journey: a query log analysis of within-session learning. Proceedings of the 7th ACM International Conference on Web Search and Data Mining, 223–232. https://doi.org/10.1145/2556195.2556217
Managing the Quality of Large-Scale Crowdsourcing
Jan 01, 2011
Vuurens, J. B. P., Eickhoff, C., & de Vries, A. P. (2011). Managing the Quality of Large-Scale Crowdsourcing. National Institute of Standards and Technology (NIST). https://doi.org/10.6028/nist.sp.500-296.crowd-tud_dmir
Probabilistic Bag-Of-Hyperlinks Model for Entity Linking
Proceedings of the 25th International Conference on World Wide Web / Apr 11, 2016
Ganea, O.-E., Ganea, M., Lucchi, A., Eickhoff, C., & Hofmann, T. (2016). Probabilistic Bag-Of-Hyperlinks Model for Entity Linking. Proceedings of the 25th International Conference on World Wide Web, 927–938. https://doi.org/10.1145/2872427.2882988
GeAnn at the TREC 2011 Crowdsourcing Track
Jan 01, 2011
Eickhoff, C., Harris, C. G., Srinivasan, P., & de Vries, A. P. (2011). GeAnn at the TREC 2011 Crowdsourcing Track. National Institute of Standards and Technology (NIST). https://doi.org/10.6028/nist.sp.500-296.crowd-geann
Comment on the Paper Titled ’The Origin of Quantum Mechanical Statistics: Insights from Research on Human Language’ (arXiv preprint arXiv:2407.14924, 2024)
Dec 02, 2024
Sienicki, K. (2024). Comment on the Paper Titled ’The Origin of Quantum Mechanical Statistics: Insights from Research on Human Language’ (arXiv preprint arXiv:2407.14924, 2024). https://doi.org/10.20944/preprints202411.2377.v1
Advancing health equity with artificial intelligence
Journal of Public Health Policy / Nov 22, 2021
Thomasian, N. M., Eickhoff, C., & Adashi, E. Y. (2021). Advancing health equity with artificial intelligence. Journal of Public Health Policy, 42(4), 602–611. https://doi.org/10.1057/s41271-021-00319-5
Multimodal attention-based deep learning for Alzheimer’s disease diagnosis
Journal of the American Medical Informatics Association / Sep 23, 2022
Golovanevsky, M., Eickhoff, C., & Singh, R. (2022). Multimodal attention-based deep learning for Alzheimer’s disease diagnosis. Journal of the American Medical Informatics Association, 29(12), 2014–2022. https://doi.org/10.1093/jamia/ocac168
Deep-learning-based real-time prediction of acute kidney injury outperforms human predictive performance
npj Digital Medicine / Oct 26, 2020
Rank, N., Pfahringer, B., Kempfert, J., Stamm, C., Kühne, T., Schoenrath, F., Falk, V., Eickhoff, C., & Meyer, A. (2020). Deep-learning-based real-time prediction of acute kidney injury outperforms human predictive performance. Npj Digital Medicine, 3(1). https://doi.org/10.1038/s41746-020-00346-8
The where in the tweet
Proceedings of the 20th ACM international conference on Information and knowledge management / Oct 24, 2011
Li, W., Serdyukov, P., de Vries, A. P., Eickhoff, C., & Larson, M. (2011). The where in the tweet. Proceedings of the 20th ACM International Conference on Information and Knowledge Management, 2473–2476. https://doi.org/10.1145/2063576.2063995
Talking Heads: Understanding Inter-Layer Communication in Transformer Language Models
Advances in Neural Information Processing Systems 37 / Jan 01, 2024
Eickhoff, C., Merullo, J., & Pavlick, E. (2024). Talking Heads: Understanding Inter-Layer Communication in Transformer Language Models. Advances in Neural Information Processing Systems 37, 61372–61418. https://doi.org/10.52202/079017-1962
Overview of ImageCLEF 2018: Challenges, Datasets and Evaluation
Lecture Notes in Computer Science / Jan 01, 2018
Ionescu, B., Müller, H., Villegas, M., García Seco de Herrera, A., Eickhoff, C., Andrearczyk, V., Dicente Cid, Y., Liauchuk, V., Kovalev, V., Hasan, S. A., Ling, Y., Farri, O., Liu, J., Lungren, M., Dang-Nguyen, D.-T., Piras, L., Riegler, M., Zhou, L., Lux, M., & Gurrin, C. (2018). Overview of ImageCLEF 2018: Challenges, Datasets and Evaluation. In Experimental IR Meets Multilinguality, Multimodality, and Interaction (pp. 309–334). Springer International Publishing. https://doi.org/10.1007/978-3-319-98932-7_28
Detecting Large Vessel Occlusion at Multiphase CT Angiography by Using a Deep Convolutional Neural Network
Radiology / Dec 01, 2020
Stib, M. T., Vasquez, J., Dong, M. P., Kim, Y. H., Subzwari, S. S., Triedman, H. J., Wang, A., Wang, H.-L. C., Yao, A. D., Jayaraman, M., Boxerman, J. L., Eickhoff, C., Cetintemel, U., Baird, G. L., & McTaggart, R. A. (2020). Detecting Large Vessel Occlusion at Multiphase CT Angiography by Using a Deep Convolutional Neural Network. Radiology, 297(3), 640–649. https://doi.org/10.1148/radiol.2020200334
Overview of ImageCLEF 2017: Information Extraction from Images
Lecture Notes in Computer Science / Jan 01, 2017
Ionescu, B., Müller, H., Villegas, M., Arenas, H., Boato, G., Dang-Nguyen, D.-T., Dicente Cid, Y., Eickhoff, C., Seco de Herrera, A. G., Gurrin, C., Islam, B., Kovalev, V., Liauchuk, V., Mothe, J., Piras, L., Riegler, M., & Schwall, I. (2017). Overview of ImageCLEF 2017: Information Extraction from Images. In Experimental IR Meets Multilinguality, Multimodality, and Interaction (pp. 315–337). Springer International Publishing. https://doi.org/10.1007/978-3-319-65813-1_28
Drug–drug interaction prediction with Wasserstein Adversarial Autoencoder-based knowledge graph embeddings
Briefings in Bioinformatics / Oct 30, 2020
Dai, Y., Guo, C., Guo, W., & Eickhoff, C. (2020). Drug–drug interaction prediction with Wasserstein Adversarial Autoencoder-based knowledge graph embeddings. Briefings in Bioinformatics, 22(4). https://doi.org/10.1093/bib/bbaa256
ArXiv preprint server plans multimillion-dollar overhaul
Nature / Jun 29, 2016
Van Noorden, R. (2016). ArXiv preprint server plans multimillion-dollar overhaul. Nature, 534(7609), 602–602. https://doi.org/10.1038/534602a
Language Models Implement Simple Word2Vec-style Vector Arithmetic
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers) / Jan 01, 2024
Merullo, J., Eickhoff, C., & Pavlick, E. (2024). Language Models Implement Simple Word2Vec-style Vector Arithmetic. Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), 5030–5047. https://doi.org/10.18653/v1/2024.naacl-long.281
TripClick: The Log Files of a Large Health Web Search Engine
Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval / Jul 11, 2021
Rekabsaz, N., Lesota, O., Schedl, M., Brassey, J., & Eickhoff, C. (2021). TripClick: The Log Files of a Large Health Web Search Engine. Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2507–2513. https://doi.org/10.1145/3404835.3463242
Web2Text: Deep Structured Boilerplate Removal
Lecture Notes in Computer Science / Jan 01, 2018
Vogels, T., Ganea, O.-E., & Eickhoff, C. (2018). Web2Text: Deep Structured Boilerplate Removal. In Advances in Information Retrieval (pp. 167–179). Springer International Publishing. https://doi.org/10.1007/978-3-319-76941-7_13
An Eye-Tracking Study of Query Reformulation
Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval / Aug 09, 2015
Eickhoff, C., Dungs, S., & Tran, V. (2015). An Eye-Tracking Study of Query Reformulation. Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, 13–22. https://doi.org/10.1145/2766462.2767703
Personalizing atypical web search sessions
Proceedings of the sixth ACM international conference on Web search and data mining / Feb 04, 2013
Eickhoff, C., Collins-Thompson, K., Bennett, P. N., & Dumais, S. (2013). Personalizing atypical web search sessions. Proceedings of the Sixth ACM International Conference on Web Search and Data Mining, 285–294. https://doi.org/10.1145/2433396.2433434
Mitigating Bias in Search Results Through Contextual Document Reranking and Neutrality Regularization
Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval / Jul 06, 2022
Zerveas, G., Rekabsaz, N., Cohen, D., & Eickhoff, C. (2022). Mitigating Bias in Search Results Through Contextual Document Reranking and Neutrality Regularization. Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2532–2538. https://doi.org/10.1145/3477495.3531891
On the Effect of Low-Frequency Terms on Neural-IR Models
Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval / Jul 18, 2019
Hofstätter, S., Rekabsaz, N., Eickhoff, C., & Hanbury, A. (2019). On the Effect of Low-Frequency Terms on Neural-IR Models. Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, 1137–1140. https://doi.org/10.1145/3331184.3331344
COVID-19 mortality prediction in the intensive care unit with deep learning based on longitudinal chest X-rays and clinical data
European Radiology / Feb 19, 2022
Cheng, J., Sollee, J., Hsieh, C., Yue, H., Vandal, N., Shanahan, J., Choi, J. W., Tran, T. M. L., Halsey, K., Iheanacho, F., Warren, J., Ahmed, A., Eickhoff, C., Feldman, M., Mortani Barbosa, E., Kamel, I., Lin, C. T., Yi, T., Healey, T., … Wang, J. (2022). COVID-19 mortality prediction in the intensive care unit with deep learning based on longitudinal chest X-rays and clinical data. European Radiology, 32(7), 4446–4456. https://doi.org/10.1007/s00330-022-08588-8
Not All Relevance Scores are Equal: Efficient Uncertainty and Calibration Modeling for Deep Retrieval Models
Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval / Jul 11, 2021
Cohen, D., Mitra, B., Lesota, O., Rekabsaz, N., & Eickhoff, C. (2021). Not All Relevance Scores are Equal: Efficient Uncertainty and Calibration Modeling for Deep Retrieval Models. Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, 654–664. https://doi.org/10.1145/3404835.3462951
A combined topical/non-topical approach to identifying web sites for children
Proceedings of the fourth ACM international conference on Web search and data mining / Feb 09, 2011
Eickhoff, C., Serdyukov, P., & de Vries, A. P. (2011). A combined topical/non-topical approach to identifying web sites for children. Proceedings of the Fourth ACM International Conference on Web Search and Data Mining, 505–514. https://doi.org/10.1145/1935826.1935900
Preprint site arXiv is banning computer-science reviews: here’s why
Nature / Nov 07, 2025
Castelvecchi, D. (2025). Preprint site arXiv is banning computer-science reviews: here’s why. Nature. https://doi.org/10.1038/d41586-025-03664-7
IsoScore: Measuring the Uniformity of Embedding Space Utilization
Findings of the Association for Computational Linguistics: ACL 2022 / Jan 01, 2022
Rudman, W., Gillman, N., Rayne, T., & Eickhoff, C. (2022). IsoScore: Measuring the Uniformity of Embedding Space Utilization. Findings of the Association for Computational Linguistics: ACL 2022, 3325–3339. https://doi.org/10.18653/v1/2022.findings-acl.262
Unsupervised Learning of Parsimonious General-Purpose Embeddings for User and Location Modeling
ACM Transactions on Information Systems / Mar 13, 2018
Yang, J., & Eickhoff, C. (2018). Unsupervised Learning of Parsimonious General-Purpose Embeddings for User and Location Modeling. ACM Transactions on Information Systems, 36(3), 1–33. https://doi.org/10.1145/3182165
An automated COVID-19 triage pipeline using artificial intelligence based on chest radiographs and clinical data
npj Digital Medicine / Jan 14, 2022
Kim, C. K., Choi, J. W., Jiao, Z., Wang, D., Wu, J., Yi, T. Y., Halsey, K. C., Eweje, F., Tran, T. M. L., Liu, C., Wang, R., Sollee, J., Hsieh, C., Chang, K., Yang, F.-X., Singh, R., Ou, J.-L., Huang, R. Y., Feng, C., … Bai, H. X. (2022). An automated COVID-19 triage pipeline using artificial intelligence based on chest radiographs and clinical data. Npj Digital Medicine, 5(1). https://doi.org/10.1038/s41746-021-00546-w
Web page classification on child suitability
Proceedings of the 19th ACM international conference on Information and knowledge management / Oct 26, 2010
Eickhoff, C., Serdyukov, P., & de Vries, A. P. (2010). Web page classification on child suitability. Proceedings of the 19th ACM International Conference on Information and Knowledge Management, 1425–1428. https://doi.org/10.1145/1871437.1871638
Unsupervised Multivariate Time-Series Transformers for Seizure Identification on EEG
2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA) / Dec 01, 2022
Potter, İ. Y., Zerveas, G., Eickhoff, C., & Duncan, D. (2022). Unsupervised Multivariate Time-Series Transformers for Seizure Identification on EEG. 2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA), 1304–1311. https://doi.org/10.1109/icmla55696.2022.00208
Parameter-efficient Modularised Bias Mitigation via AdapterFusion
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics / Jan 01, 2023
Kumar, D., Lesota, O., Zerveas, G., Cohen, D., Eickhoff, C., Schedl, M., & Rekabsaz, N. (2023). Parameter-efficient Modularised Bias Mitigation via AdapterFusion. Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics. https://doi.org/10.18653/v1/2023.eacl-main.201
NEWTS: A Corpus for News Topic-Focused Summarization
Findings of the Association for Computational Linguistics: ACL 2022 / Jan 01, 2022
Bahrainian, S. A., Feucht, S., & Eickhoff, C. (2022). NEWTS: A Corpus for News Topic-Focused Summarization. Findings of the Association for Computational Linguistics: ACL 2022. https://doi.org/10.18653/v1/2022.findings-acl.42
Supporting children's web search in school environments
Proceedings of the 4th Information Interaction in Context Symposium / Aug 21, 2012
Eickhoff, C., Dekker, P., & de Vries, A. P. (2012). Supporting children’s web search in school environments. Proceedings of the 4th Information Interaction in Context Symposium, 129–137. https://doi.org/10.1145/2362724.2362748
Introduction to the special issue on search as learning
Information Retrieval Journal / Sep 09, 2017
Eickhoff, C., Gwizdka, J., Hauff, C., & He, J. (2017). Introduction to the special issue on search as learning. Information Retrieval Journal, 20(5), 399–402. https://doi.org/10.1007/s10791-017-9315-9
Crowd-powered experts
Proceedings of the First International Workshop on Gamification for Information Retrieval / Apr 13, 2014
Eickhoff, C. (2014). Crowd-powered experts: helping surgeons interpret breast cancer images. Proceedings of the First International Workshop on Gamification for Information Retrieval, 53–56. https://doi.org/10.1145/2594776.2594788
Development of a Deep Learning Network to Classify Inferior Vena Cava Collapse to Predict Fluid Responsiveness
Journal of Ultrasound in Medicine / Oct 10, 2020
Blaivas, M., Blaivas, L., Philips, G., Merchant, R., Levy, M., Abbasi, A., Eickhoff, C., Shapiro, N., & Corl, K. (2020). Development of a Deep Learning Network to Classify Inferior Vena Cava Collapse to Predict Fluid Responsiveness. Journal of Ultrasound in Medicine, 40(8), 1495–1504. Portico. https://doi.org/10.1002/jum.15527
Do “Undocumented Workers” == “Illegal Aliens”? Differentiating Denotation and Connotation in Vector Spaces
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP) / Jan 01, 2020
Webson, A., Chen, Z., Eickhoff, C., & Pavlick, E. (2020). Do “Undocumented Workers” == “Illegal Aliens”? Differentiating Denotation and Connotation in Vector Spaces. Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), 4090–4105. https://doi.org/10.18653/v1/2020.emnlp-main.335
Dynamic compression schemes for graph coloring
Bioinformatics / Jul 18, 2018
Mustafa, H., Schilken, I., Karasikov, M., Eickhoff, C., Rätsch, G., & Kahles, A. (2018). Dynamic compression schemes for graph coloring. Bioinformatics, 35(3), 407–414. https://doi.org/10.1093/bioinformatics/bty632
Modelling Term Dependence with Copulas
Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval / Aug 09, 2015
Eickhoff, C., de Vries, A. P., & Hofmann, T. (2015). Modelling Term Dependence with Copulas. Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, 783–786. https://doi.org/10.1145/2766462.2767831
SIMSUM: Document-level Text Simplification via Simultaneous Summarization
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) / Jan 01, 2023
Blinova, S., Zhou, X., Jaggi, M., Eickhoff, C., & Bahrainian, S. A. (2023). SIMSUM: Document-level Text Simplification via Simultaneous Summarization. Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 9927–9944. https://doi.org/10.18653/v1/2023.acl-long.552
Machine learning to predict hemorrhage and thrombosis during extracorporeal membrane oxygenation
Critical Care / Dec 01, 2020
Abbasi, A., Karasu, Y., Li, C., Sodha, N. R., Eickhoff, C., & Ventetuolo, C. E. (2020). Machine learning to predict hemorrhage and thrombosis during extracorporeal membrane oxygenation. Critical Care, 24(1). https://doi.org/10.1186/s13054-020-03403-6
Enriching Word Embeddings for Patent Retrieval with Global Context
Lecture Notes in Computer Science / Jan 01, 2019
Hofstätter, S., Rekabsaz, N., Lupu, M., Eickhoff, C., & Hanbury, A. (2019). Enriching Word Embeddings for Patent Retrieval with Global Context. In Advances in Information Retrieval (pp. 810–818). Springer International Publishing. https://doi.org/10.1007/978-3-030-15712-8_57
A Modern Perspective on Query Likelihood with Deep Generative Retrieval Models
Proceedings of the 2021 ACM SIGIR International Conference on Theory of Information Retrieval / Jul 11, 2021
Lesota, O., Rekabsaz, N., Cohen, D., Grasserbauer, K. A., Eickhoff, C., & Schedl, M. (2021). A Modern Perspective on Query Likelihood with Deep Generative Retrieval Models. Proceedings of the 2021 ACM SIGIR International Conference on Theory of Information Retrieval, 185–195. https://doi.org/10.1145/3471158.3472229
Computing Web-scale Topic Models using an Asynchronous Parameter Server
Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval / Aug 07, 2017
Jagerman, R., Eickhoff, C., & de Rijke, M. (2017). Computing Web-scale Topic Models using an Asynchronous Parameter Server. Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, 1337–1340. https://doi.org/10.1145/3077136.3084135
Copulas for information retrieval
Proceedings of the 36th international ACM SIGIR conference on Research and development in information retrieval / Jul 28, 2013
Eickhoff, C., de Vries, A. P., & Collins-Thompson, K. (2013). Copulas for information retrieval. Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval, 663–672. https://doi.org/10.1145/2484028.2484066
Transcriptional profiles of pulmonary artery endothelial cells in pulmonary hypertension
Scientific Reports / Dec 18, 2023
Singh, N., Eickhoff, C., Garcia-Agundez, A., Bertone, P., Paudel, S. S., Tambe, D. T., Litzky, L. A., Cox-Flaherty, K., Klinger, J. R., Monaghan, S. F., Mullin, C. J., Pereira, M., Walsh, T., Whittenhall, M., Stevens, T., Harrington, E. O., & Ventetuolo, C. E. (2023). Transcriptional profiles of pulmonary artery endothelial cells in pulmonary hypertension. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-48077-6
CATS: Customizable Abstractive Topic-based Summarization
ACM Transactions on Information Systems / Oct 25, 2021
Bahrainian, S. A., Zerveas, G., Crestani, F., & Eickhoff, C. (2021). CATS: Customizable Abstractive Topic-based Summarization. ACM Transactions on Information Systems, 40(1), 1–24. https://doi.org/10.1145/3464299
A Cross-Platform Collection of Social Network Profiles
Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval / Jul 07, 2016
Han Veiga, M., & Eickhoff, C. (2016). A Cross-Platform Collection of Social Network Profiles. Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, 665–668. https://doi.org/10.1145/2911451.2914666
Exploiting User Comments for Audio-Visual Content Indexing and Retrieval
Lecture Notes in Computer Science / Jan 01, 2013
Eickhoff, C., Li, W., & de Vries, A. P. (2013). Exploiting User Comments for Audio-Visual Content Indexing and Retrieval. In Advances in Information Retrieval (pp. 38–49). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-36973-5_4
YouTube Videos
Watching YouTube / Dec 31, 2010
YouTube Videos. (2010). In Watching YouTube (pp. 219–222). University of Toronto Press. https://doi.org/10.3138/9781442687035-013
Search Result Explanations Improve Efficiency and Trust
Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval / Jul 25, 2020
Ramos, J., & Eickhoff, C. (2020). Search Result Explanations Improve Efficiency and Trust. Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 1597–1600. https://doi.org/10.1145/3397271.3401279
Want a coffee?
Proceedings of the 35th international ACM SIGIR conference on Research and development in information retrieval / Aug 12, 2012
Li, W., Eickhoff, C., & de Vries, A. P. (2012). Want a coffee?: predicting users’ trails. Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, 1171–1172. https://doi.org/10.1145/2348283.2348524
CODER: An efficient framework for improving retrieval through COntextual Document Embedding Reranking
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing / Jan 01, 2022
Zerveas, G., Rekabsaz, N., Cohen, D., & Eickhoff, C. (2022). CODER: An efficient framework for improving retrieval through COntextual Document Embedding Reranking. Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, 10626–10644. https://doi.org/10.18653/v1/2022.emnlp-main.727
Exploiting Document Content for Efficient Aggregation of Crowdsourcing Votes
Proceedings of the 24th ACM International on Conference on Information and Knowledge Management / Oct 17, 2015
Davtyan, M., Eickhoff, C., & Hofmann, T. (2015). Exploiting Document Content for Efficient Aggregation of Crowdsourcing Votes. Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, 783–790. https://doi.org/10.1145/2806416.2806460
Geo-spatial Domain Expertise in Microblogs
Lecture Notes in Computer Science / Jan 01, 2014
Li, W., Eickhoff, C., & de Vries, A. P. (2014). Geo-spatial Domain Expertise in Microblogs. In Advances in Information Retrieval (pp. 487–492). Springer International Publishing. https://doi.org/10.1007/978-3-319-06028-6_46
Biomedical Question Answering via Weighted Neural Network Passage Retrieval
Lecture Notes in Computer Science / Jan 01, 2018
Galkó, F., & Eickhoff, C. (2018). Biomedical Question Answering via Weighted Neural Network Passage Retrieval. In Advances in Information Retrieval (pp. 523–528). Springer International Publishing. https://doi.org/10.1007/978-3-319-76941-7_39
Named Entity Recognition of traditional architectural text based on BERT
2021 International Conference on Culture-oriented Science & Technology (ICCST) / Nov 01, 2021
Li, Y., Hou, W., & Bai, B. (2021). Named Entity Recognition of traditional architectural text based on BERT. 2021 International Conference on Culture-Oriented Science & Technology (ICCST), 181–186. https://doi.org/10.1109/iccst53801.2021.00047
Experimental IR Meets Multilinguality, Multimodality, and Interaction
Lecture Notes in Computer Science / Jan 01, 2020
Experimental IR Meets Multilinguality, Multimodality, and Interaction: 11th International Conference of the CLEF Association, CLEF 2020, Thessaloniki, Greece, September 22–25, 2020, Proceedings. (2020). In A. Arampatzis, E. Kanoulas, T. Tsikrika, S. Vrochidis, H. Joho, C. Lioma, C. Eickhoff, A. Névéol, L. Cappellato, & N. Ferro (Eds.), Lecture Notes in Computer Science. Springer International Publishing. https://doi.org/10.1007/978-3-030-58219-7
Implicit Negative Feedback in Clinical Information Retrieval
Swiss Medical Informatics / Oct 21, 2016
Kuhn, L., & Eickhoff, C. (2016). Implicit Negative Feedback in Clinical Information Retrieval. Swiss Medical Informatics. https://doi.org/10.4414/smi.32.00355
Probabilistic Local Expert Retrieval
Lecture Notes in Computer Science / Jan 01, 2016
Li, W., Eickhoff, C., & de Vries, A. P. (2016). Probabilistic Local Expert Retrieval. In Advances in Information Retrieval (pp. 227–239). Springer International Publishing. https://doi.org/10.1007/978-3-319-30671-1_17
Web Search Query Assistance Functionality for Young Audiences
Lecture Notes in Computer Science / Jan 01, 2011
Eickhoff, C., Polajnar, T., Gyllstrom, K., Torres, S. D., & Glassey, R. (2011). Web Search Query Assistance Functionality for Young Audiences. In Advances in Information Retrieval (pp. 776–779). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-20161-5_92
What Do VLMs NOTICE? A Mechanistic Interpretability Pipeline for Gaussian-Noise-free Text-Image Corruption and Evaluation
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers) / Jan 01, 2025
Golovanevsky, M., Rudman, W., Palit, V., Eickhoff, C., & Singh, R. (2025). What Do VLMs NOTICE? A Mechanistic Interpretability Pipeline for Gaussian-Noise-free Text-Image Corruption and Evaluation. Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), 11462–11482. https://doi.org/10.18653/v1/2025.naacl-long.571
The Scholarly Impact of CLEF 2010–2017
The Information Retrieval Series / Jan 01, 2019
Larsen, B. (2019). The Scholarly Impact of CLEF 2010–2017: A Google Scholar Analysis of CLEF Proceedings and Working Notes. In Information Retrieval Evaluation in a Changing World (pp. 547–554). Springer International Publishing. https://doi.org/10.1007/978-3-030-22948-1_22
Crowdsourced user interface testing for multimedia applications
Proceedings of the ACM multimedia 2012 workshop on Crowdsourcing for multimedia / Oct 29, 2012
Vliegendhart, R., Dolstra, E., & Pouwelse, J. (2012). Crowdsourced user interface testing for multimedia applications. Proceedings of the ACM Multimedia 2012 Workshop on Crowdsourcing for Multimedia, 21–22. https://doi.org/10.1145/2390803.2390813
Towards Objective Quantification of Hand Tremors and Bradykinesia Using Contactless Sensors: A Systematic Review
Frontiers in Aging Neuroscience / Oct 25, 2021
Garcia-Agundez, A., & Eickhoff, C. (2021). Towards Objective Quantification of Hand Tremors and Bradykinesia Using Contactless Sensors: A Systematic Review. Frontiers in Aging Neuroscience, 13. https://doi.org/10.3389/fnagi.2021.716102
EmSe
Proceedings of the 4th Information Interaction in Context Symposium / Aug 21, 2012
Eickhoff, C., Azzopardi, L., Hiemstra, D., de Jong, F., de Vries, A., Dowie, D., Duarte, S., Glassey, R., Gyllstrom, K., Kruisinga, F., Marshall, K., Moens, S., Polajnar, T., & van der Sluis, F. (2012). EmSe: initial evaluation of a child-friendly medical search system. Proceedings of the 4th Information Interaction in Context Symposium, 282–285. https://doi.org/10.1145/2362724.2362775
Self-Supervised Neural Topic Modeling
Findings of the Association for Computational Linguistics: EMNLP 2021 / Jan 01, 2021
Bahrainian, S. A., Jaggi, M., & Eickhoff, C. (2021). Self-Supervised Neural Topic Modeling. Findings of the Association for Computational Linguistics: EMNLP 2021, 3341–3350. https://doi.org/10.18653/v1/2021.findings-emnlp.284
Brown University at TREC Deep Learning 2019
Jan 01, 2019
Zerveas, G., Zhang, R., Kim, L., & Eickhoff, C. (2019). Brown University at TREC Deep Learning 2019. National Institute of Standards and Technology (NIST). https://doi.org/10.6028/nist.sp.1250.deep-brown
Model sensitivity analysis on arxiv
Sep 17, 2018
Pagnini, G. (2018). Model sensitivity analysis on arxiv [Review of Model sensitivity analysis on arxiv]. Copernicus GmbH. https://doi.org/10.5194/gmd-2018-33-ac4
Artificial intelligence-assisted care in medicine: a revolution or yet another blunt weapon?
European Heart Journal / Oct 21, 2019
Meyer, A., Cypko, M. A., Eickhoff, C., Falk, V., & Emmert, M. Y. (2019). Artificial intelligence-assisted care in medicine: a revolution or yet another blunt weapon? European Heart Journal, 40(40), 3286–3289. https://doi.org/10.1093/eurheartj/ehz701
Active Content-Based Crowdsourcing Task Selection
Proceedings of the 25th ACM International on Conference on Information and Knowledge Management / Oct 24, 2016
Bansal, P., Eickhoff, C., & Hofmann, T. (2016). Active Content-Based Crowdsourcing Task Selection. Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, 529–538. https://doi.org/10.1145/2983323.2983716
Neural Summarization of Electronic Health Records (Preprint)
Jun 01, 2023
Pal, K., Bahrainian, S. A., Mercurio, L., & Eickhoff, C. (2023). Neural Summarization of Electronic Health Records (Preprint). https://doi.org/10.2196/preprints.49544
Search as Learning (SAL) Workshop 2016
Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval / Jul 07, 2016
Gwizdka, J., Hansen, P., Hauff, C., He, J., & Kando, N. (2016). Search as Learning (SAL) Workshop 2016. Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, 1249–1250. https://doi.org/10.1145/2911451.2917766
The downside of markup
Proceedings of the 21st ACM international conference on Information and knowledge management / Oct 29, 2012
Gyllstrom, K., Eickhoff, C., de Vries, A. P., & Moens, M.-F. (2012). The downside of markup: examining the harmful effects of CSS and javascript on indexing today’s web. Proceedings of the 21st ACM International Conference on Information and Knowledge Management, 1990–1994. https://doi.org/10.1145/2396761.2398558
Exploring Facilitators and Barriers for Personalized Dietary Incentives Among Online Shoppers at Cardiovascular Risk and Key Informants to Inform an Automated Shopping Platform
Journal of Nutrition Education and Behavior / Sep 01, 2025
Vadiveloo, M. K., Tovar, A., Elenio, E. G., Eickhoff, C., Soucie, J. S., Ewing, S. F., Gans, K. M., & Thorndike, A. N. (2025). Exploring Facilitators and Barriers for Personalized Dietary Incentives Among Online Shoppers at Cardiovascular Risk and Key Informants to Inform an Automated Shopping Platform. Journal of Nutrition Education and Behavior. https://doi.org/10.1016/j.jneb.2025.07.010
K-Paths: Reasoning over Graph Paths for Drug Repurposing and Drug Interaction Prediction
Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining V.2 / Aug 03, 2025
Abdullahi, T., Gemou, I., Nayak, N. V., Murtaza, G., Bach, S. H., Eickhoff, C., & Singh, R. (2025). K-Paths: Reasoning over Graph Paths for Drug Repurposing and Drug Interaction Prediction. Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining V.2, 5–16. https://doi.org/10.1145/3711896.3737011
Towards Best Practices of Axiomatic Activation Patching in Information Retrieval
Proceedings of the 48th International ACM SIGIR Conference on Research and Development in Information Retrieval / Jul 13, 2025
Polyakov, G., Chen, C., & Eickhoff, C. (2025). Towards Best Practices of Axiomatic Activation Patching in Information Retrieval. Proceedings of the 48th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2972–2976. https://doi.org/10.1145/3726302.3730256
Workshop on Explainability in Information Retrieval
Proceedings of the 48th International ACM SIGIR Conference on Research and Development in Information Retrieval / Jul 13, 2025
Heuss, M., Chen, C., Anand, A., Eickhoff, C., & Verberne, S. (2025). Workshop on Explainability in Information Retrieval. Proceedings of the 48th International ACM SIGIR Conference on Research and Development in Information Retrieval, 4164–4167. https://doi.org/10.1145/3726302.3730361
Retrieval Augmented Therapy Suggestion for Molecular Tumor Boards: Algorithmic Development and Validation Study
Journal of Medical Internet Research / Mar 05, 2025
Berman, E., Sundberg Malek, H., Bitzer, M., Malek, N., & Eickhoff, C. (2025). Retrieval Augmented Therapy Suggestion for Molecular Tumor Boards: Algorithmic Development and Validation Study. Journal of Medical Internet Research, 27, e64364. https://doi.org/10.2196/64364
What’s Going On With Me and How Can I Better Manage My Health? The Potential of GPT-4 to Transform Discharge Letters Into Patient-Centered Letters to Enhance Patient Safety: Prospective, Exploratory Study
Journal of Medical Internet Research / Jan 21, 2025
Eisinger, F., Holderried, F., Mahling, M., Stegemann–Philipps, C., Herrmann–Werner, A., Nazarenus, E., Sonanini, A., Guthoff, M., Eickhoff, C., & Holderried, M. (2025). What’s Going On With Me and How Can I Better Manage My Health? The Potential of GPT-4 to Transform Discharge Letters Into Patient-Centered Letters to Enhance Patient Safety: Prospective, Exploratory Study. Journal of Medical Internet Research, 27, e67143. https://doi.org/10.2196/67143
MechIR: A Mechanistic Interpretability Framework for Information Retrieval
Lecture Notes in Computer Science / Jan 01, 2025
Parry, A., Chen, C., Eickhoff, C., & MacAvaney, S. (2025). MechIR: A Mechanistic Interpretability Framework for Information Retrieval. In Advances in Information Retrieval (pp. 89–95). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-88720-8_16
What’s Going On With Me and How Can I Better Manage My Health? The Potential of GPT-4 to Transform Discharge Letters Into Patient-Centered Letters to Enhance Patient Safety: Prospective, Exploratory Study (Preprint)
Oct 04, 2024
Eisinger, F., Holderried, F., Mahling, M., Stegemann–Philipps, C., Herrmann–Werner, A., Nazarenus, E., Sonanini, A., Guthoff, M., Eickhoff, C., & Holderried, M. (2024). What’s Going On With Me and How Can I Better Manage My Health? The Potential of GPT-4 to Transform Discharge Letters Into Patient-Centered Letters to Enhance Patient Safety: Prospective, Exploratory Study (Preprint). https://doi.org/10.2196/preprints.67143
A Language Model–Powered Simulated Patient With Automated Feedback for History Taking: Prospective Study
JMIR Medical Education / Aug 16, 2024
Holderried, F., Stegemann-Philipps, C., Herrmann-Werner, A., Festl-Wietek, T., Holderried, M., Eickhoff, C., & Mahling, M. (2024). A Language Model–Powered Simulated Patient With Automated Feedback for History Taking: Prospective Study. JMIR Medical Education, 10, e59213. https://doi.org/10.2196/59213
Retrieval Augmented Zero-Shot Text Classification
Proceedings of the 2024 ACM SIGIR International Conference on Theory of Information Retrieval / Aug 02, 2024
Abdullahi, T., Singh, R., & Eickhoff, C. (2024). Retrieval Augmented Zero-Shot Text Classification. Proceedings of the 2024 ACM SIGIR International Conference on Theory of Information Retrieval, 195–203. https://doi.org/10.1145/3664190.3672514
Retrieval Augmented Therapy Suggestion for Molecular Tumor Boards: Algorithmic Development and Validation Study (Preprint)
Jul 16, 2024
Berman, E., Sundberg Malek, H., Bitzer, M., Malek, N., & Eickhoff, C. (2024). Retrieval Augmented Therapy Suggestion for Molecular Tumor Boards: Algorithmic Development and Validation Study (Preprint). https://doi.org/10.2196/preprints.64364
Axiomatic Causal Interventions for Reverse Engineering Relevance Computation in Neural Retrieval Models
Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval / Jul 10, 2024
Chen, C., Merullo, J., & Eickhoff, C. (2024). Axiomatic Causal Interventions for Reverse Engineering Relevance Computation in Neural Retrieval Models. Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval, 1401–1410. https://doi.org/10.1145/3626772.3657841
Evaluating Search System Explainability with Psychometrics and Crowdsourcing
Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval / Jul 10, 2024
Chen, C., & Eickhoff, C. (2024). Evaluating Search System Explainability with Psychometrics and Crowdsourcing. Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval, 1051–1061. https://doi.org/10.1145/3626772.3657796
Retrieval-Based Diagnostic Decision Support: Mixed Methods Study
JMIR Medical Informatics / Jun 19, 2024
Abdullahi, T., Mercurio, L., Singh, R., & Eickhoff, C. (2024). Retrieval-Based Diagnostic Decision Support: Mixed Methods Study. JMIR Medical Informatics, 12, e50209. https://doi.org/10.2196/50209
A Language Model–Powered Simulated Patient With Automated Feedback for History Taking: Prospective Study (Preprint)
Apr 05, 2024
Holderried, F., Stegemann-Philipps, C., Herrmann-Werner, A., Festl-Wietek, T., Holderried, M., Eickhoff, C., & Mahling, M. (2024). A Language Model–Powered Simulated Patient With Automated Feedback for History Taking: Prospective Study (Preprint). https://doi.org/10.2196/preprints.59213
Learning to Make Rare and Complex Diagnoses With Generative AI Assistance: Qualitative Study of Popular Large Language Models
JMIR Medical Education / Feb 13, 2024
Abdullahi, T., Singh, R., & Eickhoff, C. (2024). Learning to Make Rare and Complex Diagnoses With Generative AI Assistance: Qualitative Study of Popular Large Language Models. JMIR Medical Education, 10, e51391. https://doi.org/10.2196/51391
Wasserstein adversarial learning based temporal knowledge graph embedding
Information Sciences / Feb 01, 2024
Dai, Y., Guo, W., & Eickhoff, C. (2024). Wasserstein adversarial learning based temporal knowledge graph embedding. Information Sciences, 659, 120061. https://doi.org/10.1016/j.ins.2023.120061
Predicting Acute Brain Injury in Venoarterial Extracorporeal Membrane Oxygenation Patients with Tree-Based Machine Learning: Analysis of the Extracorporeal Life Support Organization Registry
Jan 11, 2024
Kalra, A., Bachina, P., Shou, B. L., Hwang, J., Barshay, M., Kulkarni, S., Sears, I., Eickhoff, C., Bermudez, C. A., Brodie, D., Ventetuolo, C. E., Kim, B. S., Whitman, G. J. R., Abbasi, A., & Cho, S.-M. (2024). Predicting Acute Brain Injury in Venoarterial Extracorporeal Membrane Oxygenation Patients with Tree-Based Machine Learning: Analysis of the Extracorporeal Life Support Organization Registry. https://doi.org/10.21203/rs.3.rs-3848514/v1
Utilizing Machine Learning to Predict Neurological Injury in Venovenous Extracorporeal Membrane Oxygenation Patients: An Extracorporeal Life Support Organization Registry Analysis
Dec 22, 2023
Kalra, A., Bachina, P., Shou, B. L., Hwang, J., Barshay, M., Kulkarni, S., Sears, I., Eickhoff, C., Bermudez, C. A., Brodie, D., Ventetuolo, C. E., Whitman, G. J. R., Abbasi, A., & Cho, S.-M. (2023). Utilizing Machine Learning to Predict Neurological Injury in Venovenous Extracorporeal Membrane Oxygenation Patients: An Extracorporeal Life Support Organization Registry Analysis. https://doi.org/10.21203/rs.3.rs-3779429/v1
Predictive Uncertainty-based Bias Mitigation in Ranking
Proceedings of the 32nd ACM International Conference on Information and Knowledge Management / Oct 21, 2023
Heuss, M., Cohen, D., Mansoury, M., Rijke, M. de, & Eickhoff, C. (2023). Predictive Uncertainty-based Bias Mitigation in Ranking. Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, 762–772. https://doi.org/10.1145/3583780.3615011
Learning to Make Rare and Complex Diagnoses With Generative AI Assistance: Qualitative Study of Popular Large Language Models (Preprint)
Jul 30, 2023
Abdullahi, T., Singh, R., & Eickhoff, C. (2023). Learning to Make Rare and Complex Diagnoses With Generative AI Assistance: Qualitative Study of Popular Large Language Models (Preprint). https://doi.org/10.2196/preprints.51391
Retrieval-Based Diagnostic Decision Support: Mixed Methods Study (Preprint)
Jun 25, 2023
Abdullahi, T., Mercurio, L., Singh, R., & Eickhoff, C. (2023). Retrieval-Based Diagnostic Decision Support: Mixed Methods Study (Preprint). https://doi.org/10.2196/preprints.50209
Weakly supervised pneumonia localization in chest X‐rays using generative adversarial networks
Medical Physics / Oct 26, 2021
Keshavamurthy, K. N., Eickhoff, C., & Juluru, K. (2021). Weakly supervised pneumonia localization in chest X‐rays using generative adversarial networks. Medical Physics, 48(11), 7154–7171. Portico. https://doi.org/10.1002/mp.15185
Categorization of free-text drug orders using character-level recurrent neural networks
International Journal of Medical Informatics / Sep 01, 2019
Raiskin, Y., Eickhoff, C., & Beeler, P. E. (2019). Categorization of free-text drug orders using character-level recurrent neural networks. International Journal of Medical Informatics, 129, 20–28. https://doi.org/10.1016/j.ijmedinf.2019.05.020
Dynamic compression schemes for graph coloring
Dec 26, 2017
Mustafa, H., Schilken, I., Karasikov, M., Eickhoff, C., Rätsch, G., & Kahles, A. (2017). Dynamic compression schemes for graph coloring. https://doi.org/10.1101/239806
The Accuracy And Clinical Relevance of Chat GPT-4 in Triple Negative Breast Cancer Research
Acta Informatica Medica / Jan 01, 2025
Gummadi, R., Pindiprolu, S., & Kumar, C. (2025). The Accuracy And Clinical Relevance of Chat GPT-4 in Triple Negative Breast Cancer Research. Acta Informatica Medica, 33(3), 220. https://doi.org/10.5455/aim.2025.33.220-224
Report from the 4th Strategic Workshop on Information Retrieval in Lorne (SWIRL 2025)
ACM SIGIR Forum / Jun 01, 2025
Trippas, J. R., Culpepper, J. S., Aliannejadi, M., Allan, J., Amigó, E., Arguello, J., Azzopardi, L., Bailey, P., Callan, J., Capra, R., Craswell, N., Croft, B., Dalton, J., Demartini, G., Dietz, L., Dou, Z., Eickhoff, C., Ekstrand, M., Ferro, N., … Zuccon, G. (2025). Report from the 4th Strategic Workshop on Information Retrieval in Lorne (SWIRL 2025). ACM SIGIR Forum, 59(1), 1–68. https://doi.org/10.1145/3769733.3769739
The topology of molecular representations and its influence on machine learning performance
Journal of Cheminformatics / Jul 21, 2025
Rottach, F., Schieferdecker, S., & Eickhoff, C. (2025). The topology of molecular representations and its influence on machine learning performance. Journal of Cheminformatics, 17(1). https://doi.org/10.1186/s13321-025-01045-w
Artificial intelligence based real-time prediction of imminent heart failure hospitalisation in patients undergoing non-invasive telemedicine
Frontiers in Cardiovascular Medicine / Sep 20, 2024
Hinrichs, N., Meyer, A., Koehler, K., Kaas, T., Hiddemann, M., Spethmann, S., Balzer, F., Eickhoff, C., Falk, V., Hindricks, G., Dagres, N., & Koehler, F. (2024). Artificial intelligence based real-time prediction of imminent heart failure hospitalisation in patients undergoing non-invasive telemedicine. Frontiers in Cardiovascular Medicine, 11. https://doi.org/10.3389/fcvm.2024.1457995
Identifying momentary suicidal ideation using machine learning in patients at high-risk for suicide
Journal of Affective Disorders / Nov 01, 2024
Bozzay, M. L., Hughes, C. D., Eickhoff, C., Schatten, H., & Armey, M. F. (2024). Identifying momentary suicidal ideation using machine learning in patients at high-risk for suicide. Journal of Affective Disorders, 364, 57–64. https://doi.org/10.1016/j.jad.2024.08.038
Künstliche Intelligenz in der Medizin: Wo stehen wir heute, und was liegt vor uns?
Zeitschrift für Herz-,Thorax- und Gefäßchirurgie / Aug 27, 2024
Garcia-Agundez, A., & Eickhoff, C. (2024). Künstliche Intelligenz in der Medizin: Wo stehen wir heute, und was liegt vor uns? Zeitschrift Für Herz-,Thorax- Und Gefäßchirurgie. https://doi.org/10.1007/s00398-024-00664-z
Short-term vital parameter forecasting in the intensive care unit: A benchmark study leveraging data from patients after cardiothoracic surgery
PLOS Digital Health / Sep 12, 2024
Hinrichs, N., Roeschl, T., Lanmueller, P., Balzer, F., Eickhoff, C., O’Brien, B., Falk, V., & Meyer, A. (2024). Short-term vital parameter forecasting in the intensive care unit: A benchmark study leveraging data from patients after cardiothoracic surgery. PLOS Digital Health, 3(9), e0000598. https://doi.org/10.1371/journal.pdig.0000598
One Third of Alcohol Use Disorder Diagnoses are Missed by ICD Coding
Substance Use & Addiction Journal / Nov 07, 2024
Mercurio, L., Garcia, A., Ruest, S., Duffy, S. J., & Eickhoff, C. (2024). One Third of Alcohol Use Disorder Diagnoses are Missed by ICD Coding. Substance Use & Addiction Journal, 46(2), 328–336. https://doi.org/10.1177/29767342241288112
Pre-operative lung ablation prediction using deep learning
European Radiology / May 22, 2024
Keshavamurthy, K. N., Eickhoff, C., & Ziv, E. (2024). Pre-operative lung ablation prediction using deep learning. European Radiology, 34(11), 7161–7172. https://doi.org/10.1007/s00330-024-10767-8
Interpretable machine learning-based predictive modeling of patient outcomes following cardiac surgery
The Journal of Thoracic and Cardiovascular Surgery / Jan 01, 2025
Abbasi, A., Li, C., Dekle, M., Bermudez, C. A., Brodie, D., Sellke, F. W., Sodha, N. R., Ventetuolo, C. E., & Eickhoff, C. (2025). Interpretable machine learning-based predictive modeling of patient outcomes following cardiac surgery. The Journal of Thoracic and Cardiovascular Surgery, 169(1), 114-123.e28. https://doi.org/10.1016/j.jtcvs.2023.11.034
Editorial: The Potential of Machine-learning in Pharmacogenetics, Pharmacogenomics and Pharmacoepidemiology: Volume II
Frontiers in Pharmacology / Aug 29, 2023
Garcia-Agundez, A., Garcia-Martin, E., & Eickhoff, C. (2023). Editorial: The Potential of Machine-learning in Pharmacogenetics, Pharmacogenomics and Pharmacoepidemiology: Volume II. Frontiers in Pharmacology, 14. https://doi.org/10.3389/fphar.2023.1277561
AI-Controlled Closed-Loop Electrical Stimulation Implants: A Feasibility Study
Oct 24, 2022
Eickhoff, S., Garcia-Agundez, A., Haidar, D., Zaidat, B., Adjei-Mosi, M., Li, P., & Eickhoff, C. (2022). AI-Controlled Closed-Loop Electrical Stimulation Implants: A Feasibility Study. https://doi.org/10.21203/rs.3.rs-2163679/v1
Delirium detection using wearable sensors and machine learning in patients with intracerebral hemorrhage
Frontiers in Neurology / Jun 09, 2023
Ahmed, A., Garcia-Agundez, A., Petrovic, I., Radaei, F., Fife, J., Zhou, J., Karas, H., Moody, S., Drake, J., Jones, R. N., Eickhoff, C., & Reznik, M. E. (2023). Delirium detection using wearable sensors and machine learning in patients with intracerebral hemorrhage. Frontiers in Neurology, 14. https://doi.org/10.3389/fneur.2023.1135472
Neural text generation in regulatory medical writing
Frontiers in Pharmacology / Feb 10, 2023
Meyer, C., Adkins, D., Pal, K., Galici, R., Garcia-Agundez, A., & Eickhoff, C. (2023). Neural text generation in regulatory medical writing. Frontiers in Pharmacology, 14. https://doi.org/10.3389/fphar.2023.1086913
Risk Factors for Pediatric Sepsis in the Emergency Department
Pediatric Emergency Care / Jan 17, 2023
Mercurio, L., Pou, S., Duffy, S., & Eickhoff, C. (2023). Risk Factors for Pediatric Sepsis in the Emergency Department: A Machine Learning Pilot Study. Pediatric Emergency Care, 39(2), e48–e56. https://doi.org/10.1097/pec.0000000000002893
Editorial: The Potential of Machine Learning in Pharmacogenetics, Pharmacogenomics and Pharmacoepidemiology
Frontiers in Pharmacology / May 20, 2022
Garcia-Agundez, A., García-Martín, E., & Eickhoff, C. (2022). Editorial: The Potential of Machine Learning in Pharmacogenetics, Pharmacogenomics and Pharmacoepidemiology. Frontiers in Pharmacology, 13. https://doi.org/10.3389/fphar.2022.928527
Correction to: COVID-19 mortality prediction in the intensive care unit with deep learning based on longitudinal chest X-rays and clinical data
European Radiology / Mar 23, 2022
Cheng, J., Sollee, J., Hsieh, C., Yue, H., Vandal, N., Shanahan, J., Choi, J. W., Tran, T. M. L., Halsey, K., Iheanacho, F., Warren, J., Ahmed, A., Eickhoff, C., Feldman, M., Barbosa, E. M., Kamel, I., Lin, C. T., Yi, T., Healey, T., … Wang, J. (2022). Correction to: COVID-19 mortality prediction in the intensive care unit with deep learning based on longitudinal chest X-rays and clinical data. European Radiology, 32(7), 5034–5034. https://doi.org/10.1007/s00330-022-08680-z
On the Role of “Digital Actors” in Entertainment-Based Virtual Worlds
The Oxford Handbook of Virtuality / Dec 16, 2013
Carlisle, P. (2013). On the Role of “Digital Actors” in Entertainment-Based Virtual Worlds. In The Oxford Handbook of Virtuality (pp. 511–525). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780199826162.013.040
Machine learning and deep learning-based approaches in epilepsy
Ghosh, S. (n.d.). Machine learning and deep learning-based approaches in epilepsy [University of Queensland Library]. https://doi.org/10.14264/e30aba1
Quantifying the Risks of LLM- and Tool-assisted Rephrasing to Linguistic Diversity
Findings of the Association for Computational Linguistics: EMNLP 2025 / Jan 01, 2025
Wang, M., & Spitz, A. (2025). Quantifying the Risks of LLM- and Tool-assisted Rephrasing to Linguistic Diversity. Findings of the Association for Computational Linguistics: EMNLP 2025, 22561–22574. https://doi.org/10.18653/v1/2025.findings-emnlp.1228
Position: Benchmarking is Broken - Don't Let AI be its Own Judge
Sep 10, 2025
Cheng, Z., Wohnig, S., Gupta, R., Alam, S., Abdullahi, T., Alves, J., Nielsen-Garcia, C., Mir, S., Li, S., Orender, J., Bahrainian, S. A., Kirste, D., Gokaslan, A., Glinka, M., Eickhoff, C., Viswanath, P., & Wolff, R. (2025). Position: Benchmarking is Broken - Don’t Let AI be its Own Judge. https://doi.org/10.36227/techrxiv.175752188.89738992/v1
Pixels Versus Priors: Controlling Knowledge Priors in Vision-Language Models through Visual Counterfacts
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing / Jan 01, 2025
Golovanevsky, M., Rudman, W., Lepori, M. A., Bar, A., Singh, R., & Eickhoff, C. (2025). Pixels Versus Priors: Controlling Knowledge Priors in Vision-Language Models through Visual Counterfacts. Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, 24848–24863. https://doi.org/10.18653/v1/2025.emnlp-main.1262
Pathway to Relevance: How Cross-Encoders Implement a Semantic Variant of BM25
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing / Jan 01, 2025
Lu, M., Chen, C., & Eickhoff, C. (2025). Pathway to Relevance: How Cross-Encoders Implement a Semantic Variant of BM25. Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, 25536–25558. https://doi.org/10.18653/v1/2025.emnlp-main.1297
Interpretability Analysis of Arithmetic In-Context Learning in Large Language Models
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing / Jan 01, 2025
Polyakov, G., Hepting, C., Eickhoff, C., & Bahrainian, S. A. (2025). Interpretability Analysis of Arithmetic In-Context Learning in Large Language Models. Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, 1758–1777. https://doi.org/10.18653/v1/2025.emnlp-main.92
Paths Not Taken: Understanding and Mending the Multilingual Factual Recall Pipeline
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing / Jan 01, 2025
Lu, M., Zhang, R., Eickhoff, C., & Pavlick, E. (2025). Paths Not Taken: Understanding and Mending the Multilingual Factual Recall Pipeline. Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, 15077–15107. https://doi.org/10.18653/v1/2025.emnlp-main.762
Beyond Contrastive Learning: Synthetic Data Enables List-wise Training with Multiple Levels of Relevance
Findings of the Association for Computational Linguistics: EMNLP 2025 / Jan 01, 2025
Esfandiarpoor, R., Zerveas, G., Zhang, R., Mgonzo, M., Eickhoff, C., & Bach, S. (2025). Beyond Contrastive Learning: Synthetic Data Enables List-wise Training with Multiple Levels of Relevance. Findings of the Association for Computational Linguistics: EMNLP 2025, 22860–22882. https://doi.org/10.18653/v1/2025.findings-emnlp.1245
Re-Evaluating Evaluation for Multilingual Summarization
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing / Jan 01, 2024
Forde, J. Z., Zhang, R., Sutawika, L., Aji, A. F., Cahyawijaya, S., Winata, G. I., Wu, M., Eickhoff, C., Biderman, S., & Pavlick, E. (2024). Re-Evaluating Evaluation for Multilingual Summarization. Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, 19476–19493. https://doi.org/10.18653/v1/2024.emnlp-main.1085
Forgotten Polygons: Multimodal Large Language Models are Shape-Blind
Findings of the Association for Computational Linguistics: ACL 2025 / Jan 01, 2025
Rudman, W., Golovanevsky, M., Bar, A., Palit, V., LeCun, Y., Eickhoff, C., & Singh, R. (2025). Forgotten Polygons: Multimodal Large Language Models are Shape-Blind. Findings of the Association for Computational Linguistics: ACL 2025, 11983–11998. https://doi.org/10.18653/v1/2025.findings-acl.620
Evaluating Self-Generated Documents for Enhancing Retrieval-Augmented Generation with Large Language Models
Findings of the Association for Computational Linguistics: NAACL 2025 / Jan 01, 2025
Li, J., Hu, X., Yin, X., & Wan, X. (2025). Evaluating Self-Generated Documents for Enhancing Retrieval-Augmented Generation with Large Language Models. Findings of the Association for Computational Linguistics: NAACL 2025, 2741–2775. https://doi.org/10.18653/v1/2025.findings-naacl.149
One-Versus-Others Attention: Scalable Multimodal Integration for Biomedical Data
Biocomputing 2025 / Nov 21, 2024
Golovanevsky, M., Schiller, E., Nair, A., Han, E., Singh, R., & Eickhoff, C. (2024). One-Versus-Others Attention: Scalable Multimodal Integration for Biomedical Data. Biocomputing 2025, 580–593. https://doi.org/10.1142/9789819807024_0041
Text Simplification via Adaptive Teaching
Findings of the Association for Computational Linguistics ACL 2024 / Jan 01, 2024
Bahrainian, S. A., Dou, J., & Eickhoff, C. (2024). Text Simplification via Adaptive Teaching. Findings of the Association for Computational Linguistics ACL 2024, 6574–6584. https://doi.org/10.18653/v1/2024.findings-acl.392
Stable On-Line Learning with Optimized Local Learning, But Minimal Change of the Global Output
2013 12th International Conference on Machine Learning and Applications / Dec 01, 2013
Buschermohle, A., & Brockmann, W. (2013). Stable On-Line Learning with Optimized Local Learning, But Minimal Change of the Global Output. 2013 12th International Conference on Machine Learning and Applications, 21–27. https://doi.org/10.1109/icmla.2013.100
Enhancing the Ranking Context of Dense Retrieval through Reciprocal Nearest Neighbors
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing / Jan 01, 2023
Zerveas, G., Rekabsaz, N., & Eickhoff, C. (2023). Enhancing the Ranking Context of Dense Retrieval through Reciprocal Nearest Neighbors. Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, 10779–10803. https://doi.org/10.18653/v1/2023.emnlp-main.665
Outlier Dimensions Encode Task Specific Knowledge
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing / Jan 01, 2023
Rudman, W., Chen, C., & Eickhoff, C. (2023). Outlier Dimensions Encode Task Specific Knowledge. Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, 14596–14605. https://doi.org/10.18653/v1/2023.emnlp-main.901
Pretraining on Interactions for Learning Grounded Affordance Representations
Proceedings of the 11th Joint Conference on Lexical and Computational Semantics / Jan 01, 2022
Merullo, J., Ebert, D., Eickhoff, C., & Pavlick, E. (2022). Pretraining on Interactions for Learning Grounded Affordance Representations. Proceedings of the 11th Joint Conference on Lexical and Computational Semantics, 258–277. https://doi.org/10.18653/v1/2022.starsem-1.23
American Medical Informatics Association (AMIA) 2007 Annual Symposium
Apr 01, 2008
Detmer, D. (2008). American Medical Informatics Association (AMIA) 2007 Annual Symposium. Defense Technical Information Center. https://doi.org/10.21236/ada480011
Inconsistent Ranking Assumptions in Medical Search and Their Downstream Consequences
Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval / Jul 06, 2022
Cohen, D., Du, K., Mitra, B., Mercurio, L., Rekabsaz, N., & Eickhoff, C. (2022). Inconsistent Ranking Assumptions in Medical Search and Their Downstream Consequences. Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2572–2577. https://doi.org/10.1145/3477495.3531898
APA-RST: A Text Simplification Corpus with RST Annotations
Proceedings of the 4th Workshop on Computational Approaches to Discourse (CODI 2023) / Jan 01, 2023
Hewett, F. (2023). APA-RST: A Text Simplification Corpus with RST Annotations. Proceedings of the 4th Workshop on Computational Approaches to Discourse (CODI 2023), 173–179. https://doi.org/10.18653/v1/2023.codi-1.23
SOCCER: An Information-Sparse Discourse State Tracking Collection in the Sports Commentary Domain
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies / Jan 01, 2021
Zhang, R., & Eickhoff, C. (2021). SOCCER: An Information-Sparse Discourse State Tracking Collection in the Sports Commentary Domain. Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 4325–4333. https://doi.org/10.18653/v1/2021.naacl-main.342
34th Annual Symposium on Biomedical and Health Informatics (AMIA 2010) conference report
ACM SIGHIT Record / Mar 01, 2011
Lai, A. M. (2011). 34th Annual Symposium on Biomedical and Health Informatics (AMIA 2010) conference report. ACM SIGHIT Record, 1(1), 33–37. https://doi.org/10.1145/1971706.1971717
Web-Based Visualization of MeSH-Based PubMed/MEDLINE Statistics
Studies in Health Technology and Informatics / Jan 01, 2019
Restrepo Maria I., McGrath Mary C., Sarkar Indra Neil, & Chen Elizabeth S. (2019). Web-Based Visualization of MeSH-Based PubMed/MEDLINE Statistics. In MEDINFO 2019: Health and Wellbeing e-Networks for All. IOS Press. https://doi.org/10.3233/shti190499
Baxter Amia Automated Peritoneal Dialysis Cycler Set
Biomedical Safety & Standards / Mar 15, 2024
Baxter Amia Automated Peritoneal Dialysis Cycler Set. (2024). Biomedical Safety & Standards, 54(5), 27–28. https://doi.org/10.1097/01.bmsas.0001007808.61120.71
Education
Technische Universiteit Delft
Ph.D. (Computer Science) / October, 2014
The University of Edinburgh
M.Sc. (Artificial Intelligence) / November, 2009
FHDW Hannover
B.Sc. / 2008
Experience
University of Tübingen
Professor / 2022 — Present
Brown University
Manning Assistant Professor / 2018 — 2022
ETH Zurich
Postdoc / 2014 — 2018
University Hospital Tübingen
Scientific Director (Medical Data Integration Center) / 2022 — Present
Harvard University
Visiting Fellow / 2017 — 2017
codiag AG
Co-Founder & Chief Scientist / 2018 — 2022
CareCrowd
Co-Founder & CTO / 2024 — Present
Join Carsten on NotedSource!
Join Now
At NotedSource, we believe that professors, post-docs, scientists and other researchers have deep, untapped knowledge and expertise that can be leveraged to drive innovation within companies. NotedSource is committed to bridging the gap between academia and industry by providing a platform for collaboration with industry and networking with other researchers.
For industry, NotedSource identifies the right academic experts in 24 hours to help organizations build and grow. With a platform of thousands of knowledgeable PhDs, scientists, and industry experts, NotedSource makes connecting and collaborating easy.
For academic researchers such as professors, post-docs, and Ph.D.s, NotedSource provides tools to discover and connect to your colleagues with messaging and news feeds, in addition to the opportunity to be paid for your collaboration with vetted partners.
Expert Institutions
Proudly trusted by