Yuan Yang

Assistant Professor at Columbia University

Research Expertise

Colloid and Surface Chemistry
Biochemistry
Catalysis
Materials Chemistry
Electrochemistry
Surfaces, Coatings and Films
Condensed Matter Physics
Renewable Energy, Sustainability and the Environment
Electronic, Optical and Magnetic Materials
Mechanical Engineering
Mechanics of Materials
Biomaterials
Bioengineering
Energy Engineering and Power Technology
Fuel Technology
Electrical and Electronic Engineering
Building and Construction
Civil and Structural Engineering
Computer Graphics and Computer-Aided Design
Polymers and Plastics
Physical and Theoretical Chemistry
Atomic and Molecular Physics, and Optics
Pharmaceutical Science
Pollution
Nuclear Energy and Engineering
Environmental Chemistry
Spectroscopy
Filtration and Separation
Inorganic Chemistry
Organic Chemistry
Metals and Alloys
Ceramics and Composites
Biomedical Engineering

About

Yuan Yang is an Assistant Professor of Materials Science and Engineering at Columbia University. He received his Ph.D. in Materials Science and Engineering from Stanford University in 2012. His research interests include nanomaterials and optoelectronic devices. He has published over 50 papers in peer-reviewed journals and has been awarded several patents.

Publications

(Invited) Mechanically Extreme Batteries: From Flexible to Structural

ECS Meeting Abstracts / Oct 09, 2022

Yang, Y. (2022). (Invited) Mechanically Extreme Batteries: From Flexible to Structural. ECS Meeting Abstracts, MA2022-02(5), 559–559. https://doi.org/10.1149/ma2022-025559mtgabs

Stabilizing lithium plating in polymer electrolytes by concentration-polarization-induced phase transformation

Joule / Oct 01, 2022

Cheng, Q., Jin, T., Miao, Y., Liu, Z., Borovilas, J., Zhang, H., Liu, S., Kim, S.-Y., Zhang, R., Wang, H., Chen, X., Chen, L.-Q., Li, J., Min, W., & Yang, Y. (2022). Stabilizing lithium plating in polymer electrolytes by concentration-polarization-induced phase transformation. Joule, 6(10), 2372–2389. https://doi.org/10.1016/j.joule.2022.08.001

Iterative Synthesis of Contorted Macromolecular Ladders for Fast-Charging and Long-Life Lithium Batteries

Journal of the American Chemical Society / Jul 25, 2022

Jin, Z., Cheng, Q., Bao, S. T., Zhang, R., Evans, A. M., Ng, F., Xu, Y., Steigerwald, M. L., McDermott, A. E., Yang, Y., & Nuckolls, C. (2022). Iterative Synthesis of Contorted Macromolecular Ladders for Fast-Charging and Long-Life Lithium Batteries. Journal of the American Chemical Society, 144(30), 13973–13980. https://doi.org/10.1021/jacs.2c06527

Modeling Isotope Separation in Electrochemical Lithium Deposition

Journal of The Electrochemical Society / Mar 01, 2022

Wild, J., Wang, P., Jin, T., & Yang, Y. (2022). Modeling Isotope Separation in Electrochemical Lithium Deposition. Journal of The Electrochemical Society, 169(3), 032504. https://doi.org/10.1149/1945-7111/ac5854

Passive daytime radiative cooling: Fundamentals, material designs, and applications

EcoMat / Oct 30, 2021

Chen, M., Pang, D., Chen, X., Yan, H., & Yang, Y. (2021). Passive daytime radiative cooling: Fundamentals, material designs, and applications. EcoMat, 4(1). Portico. https://doi.org/10.1002/eom2.12153

Chemical Heterogeneity in PAN/LLZTO Composite Electrolytes by Synchrotron Imaging

Journal of The Electrochemical Society / Nov 01, 2021

Xu, T., Chen, C., Jin, T., Lou, S., Zhang, R., Xiao, X., Huang, X., & Yang, Y. (2021). Chemical Heterogeneity in PAN/LLZTO Composite Electrolytes by Synchrotron Imaging. Journal of The Electrochemical Society, 168(11), 110522. https://doi.org/10.1149/1945-7111/ac352a

High-performance organic pseudocapacitors via molecular contortion

Nature Materials / Apr 01, 2021

Russell, J. C., Posey, V. A., Gray, J., May, R., Reed, D. A., Zhang, H., Marbella, L. E., Steigerwald, M. L., Yang, Y., Roy, X., Nuckolls, C., & Peurifoy, S. R. (2021). High-performance organic pseudocapacitors via molecular contortion. Nature Materials, 20(8), 1136–1141. https://doi.org/10.1038/s41563-021-00954-z

Bioinspired, Tree‐Root‐Like Interfacial Designs for Structural Batteries with Enhanced Mechanical Properties

Advanced Energy Materials / May 28, 2021

Jin, T., Ma, Y., Xiong, Z., Fan, X., Luo, Y., Hui, Z., Chen, X., & Yang, Y. (2021). Bioinspired, Tree‐Root‐Like Interfacial Designs for Structural Batteries with Enhanced Mechanical Properties. Advanced Energy Materials, 11(25), 2100997. Portico. https://doi.org/10.1002/aenm.202100997

Scalable Aqueous Processing‐Based Passive Daytime Radiative Cooling Coatings

Advanced Functional Materials / Feb 26, 2021

Huang, W., Chen, Y., Luo, Y., Mandal, J., Li, W., Chen, M., Tsai, C., Shan, Z., Yu, N., & Yang, Y. (2021). Scalable Aqueous Processing‐Based Passive Daytime Radiative Cooling Coatings. Advanced Functional Materials, 31(19), 2010334. Portico. https://doi.org/10.1002/adfm.202010334

Emerging applications of stimulated Raman scattering microscopy in materials science

Matter / May 01, 2021

Cheng, Q., Miao, Y., Wild, J., Min, W., & Yang, Y. (2021). Emerging applications of stimulated Raman scattering microscopy in materials science. Matter, 4(5), 1460–1483. https://doi.org/10.1016/j.matt.2021.02.013

Bismuth Oxychloride Nanowires for Photocatalytic Decomposition of Organic Dyes

ACS Applied Nano Materials / Apr 13, 2021

Liao, X., Lan, X., Ni, N., Yang, P., Yang, Y., & Chen, X. (2021). Bismuth Oxychloride Nanowires for Photocatalytic Decomposition of Organic Dyes. ACS Applied Nano Materials, 4(4), 3887–3892. https://doi.org/10.1021/acsanm.1c00288

Designing Mesoporous Photonic Structures for High-Performance Passive Daytime Radiative Cooling

Nano Letters / Feb 01, 2021

Chen, M., Pang, D., Mandal, J., Chen, X., Yan, H., He, Y., Yu, N., & Yang, Y. (2021). Designing Mesoporous Photonic Structures for High-Performance Passive Daytime Radiative Cooling. Nano Letters, 21(3), 1412–1418. https://doi.org/10.1021/acs.nanolett.0c04241

Enhancing Electrode/Electrolyte Interfacial Stability in Solid State Lithium Batteries By Surface Coating

ECS Meeting Abstracts / Nov 23, 2020

Yang, Y. (2020). Enhancing Electrode/Electrolyte Interfacial Stability in Solid State Lithium Batteries By Surface Coating. ECS Meeting Abstracts, MA2020-02(5), 1017–1017. https://doi.org/10.1149/ma2020-0251017mtgabs

Visualization of Ion Transport and Electrode/Electrolyte Interaction in Electrolytes for Lithium Metal Batteries

ECS Meeting Abstracts / Nov 23, 2020

Yang, Y., Cheng, Q., & Min, W. (2020). Visualization of Ion Transport and Electrode/Electrolyte Interaction in Electrolytes for Lithium Metal Batteries. ECS Meeting Abstracts, MA2020-02(4), 729–729. https://doi.org/10.1149/ma2020-024729mtgabs

Mitigating Interfacial Instability in Polymer Electrolyte-Based Solid-State Lithium Metal Batteries with 4 V Cathodes

ACS Energy Letters / Sep 14, 2020

Li, Z., Zhang, H., Sun, X., & Yang, Y. (2020). Mitigating Interfacial Instability in Polymer Electrolyte-Based Solid-State Lithium Metal Batteries with 4 V Cathodes. ACS Energy Letters, 5(10), 3244–3253. https://doi.org/10.1021/acsenergylett.0c01465

(Invited) Characterization and Design of Solid Polymer-Based High Voltage Lithium Batteries

ECS Meeting Abstracts / May 01, 2020

Yang, Y. (2020). (Invited) Characterization and Design of Solid Polymer-Based High Voltage Lithium Batteries. ECS Meeting Abstracts, MA2020-01(2), 248–248. https://doi.org/10.1149/ma2020-012248mtgabs

Nanomaterials for implantable batteries to power cardiac devices

Materials Today Nano / Mar 01, 2020

Zhang, T., Li, Z., Hou, W., & Yang, Y. (2020). Nanomaterials for implantable batteries to power cardiac devices. Materials Today Nano, 9, 100070. https://doi.org/10.1016/j.mtnano.2019.100070

Colored and paintable bilayer coatings with high solar-infrared reflectance for efficient cooling

Science Advances / Apr 24, 2020

Chen, Y., Mandal, J., Li, W., Smith-Washington, A., Tsai, C.-C., Huang, W., Shrestha, S., Yu, N., Han, R. P. S., Cao, A., & Yang, Y. (2020). Colored and paintable bilayer coatings with high solar-infrared reflectance for efficient cooling. Science Advances, 6(17). https://doi.org/10.1126/sciadv.aaz5413

Design and experiment of a sun-powered smart building envelope with automatic control

Energy and Buildings / Sep 01, 2020

Lin, Q., Zhang, Y., Mieghem, A. V., Chen, Y.-C., Yu, N., Yang, Y., & Yin, H. (2020). Design and experiment of a sun-powered smart building envelope with automatic control. Energy and Buildings, 223, 110173. https://doi.org/10.1016/j.enbuild.2020.110173

Determining the Length Scale of Transport Impedances in Li-Ion Electrodes: Li(Ni0.33Mn0.33Co0.33)O2

Journal of The Electrochemical Society / Jan 06, 2020

Hui, Z., Mayilvahanan, K. S., Yang, Y., & West, A. C. (2020). Determining the Length Scale of Transport Impedances in Li-Ion Electrodes: Li(Ni0.33Mn0.33Co0.33)O2. Journal of The Electrochemical Society, 167(10), 100542. https://doi.org/10.1149/1945-7111/ab9cce

Engineering interfacial adhesion for high-performance lithium metal anode

Nano Energy / Jan 01, 2020

Xu, B., Liu, Z., Li, J., Huang, X., Qie, B., Gong, T., Tan, L., Yang, X., Paley, D., Dontigny, M., Zaghib, K., Liao, X., Cheng, Q., Zhai, H., Chen, X., Chen, L.-Q., Nan, C.-W., Lin, Y.-H., & Yang, Y. (2020). Engineering interfacial adhesion for high-performance lithium metal anode. Nano Energy, 67, 104242. https://doi.org/10.1016/j.nanoen.2019.104242

FeOF/TiO2 Hetero-Nanostructures for High-Areal-Capacity Fluoride Cathodes

ACS Applied Materials & Interfaces / Jul 02, 2020

Li, W., Chen, Y., Zangiabadi, A., Li, Z., Xiao, X., Huang, W., Cheng, Q., Lou, S., Zhang, H., Cao, A., Roy, X., & Yang, Y. (2020). FeOF/TiO2 Hetero-Nanostructures for High-Areal-Capacity Fluoride Cathodes. ACS Applied Materials & Interfaces, 12(30), 33803–33809. https://doi.org/10.1021/acsami.0c09185

Insights into interfacial effect and local lithium-ion transport in polycrystalline cathodes of solid-state batteries

Nature Communications / Nov 11, 2020

Lou, S., Liu, Q., Zhang, F., Liu, Q., Yu, Z., Mu, T., Zhao, Y., Borovilas, J., Chen, Y., Ge, M., Xiao, X., Lee, W.-K., Yin, G., Yang, Y., Sun, X., & Wang, J. (2020). Insights into interfacial effect and local lithium-ion transport in polycrystalline cathodes of solid-state batteries. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-19528-9

Interfacial engineering for stabilizing polymer electrolytes with 4V cathodes in lithium metal batteries at elevated temperature

Nano Energy / Jun 01, 2020

Li, Z., Li, A., Zhang, H., Lin, R., Jin, T., Cheng, Q., Xiao, X., Lee, W.-K., Ge, M., Zhang, H., Zangiabadi, A., Waluyo, I., Hunt, A., Zhai, H., Borovilas, J. J., Wang, P., Yang, X.-Q., Chuan, X., & Yang, Y. (2020). Interfacial engineering for stabilizing polymer electrolytes with 4V cathodes in lithium metal batteries at elevated temperature. Nano Energy, 72, 104655. https://doi.org/10.1016/j.nanoen.2020.104655

Mechanically-robust structural lithium-sulfur battery with high energy density

Energy Storage Materials / Dec 01, 2020

Huang, W., Wang, P., Liao, X., Chen, Y., Borovilas, J., Jin, T., Li, A., Cheng, Q., Zhang, Y., Zhai, H., Chitu, A., Shan, Z., & Yang, Y. (2020). Mechanically-robust structural lithium-sulfur battery with high energy density. Energy Storage Materials, 33, 416–422. https://doi.org/10.1016/j.ensm.2020.08.018

Multi-scale stabilization of high-voltage LiCoO2 enabled by nanoscale solid electrolyte coating

Energy Storage Materials / Aug 01, 2020

Li, Z., Li, A., Zhang, H., Ning, F., Li, W., Zangiabadi, A., Cheng, Q., Borovilas, J. J., Chen, Y., Zhang, H., Xiao, X., Ouyang, C., Huang, X., Lee, W.-K., Ge, M., Chu, Y. S., Chuan, X., & Yang, Y. (2020). Multi-scale stabilization of high-voltage LiCoO2 enabled by nanoscale solid electrolyte coating. Energy Storage Materials, 29, 71–77. https://doi.org/10.1016/j.ensm.2020.03.031

Nacre‐Inspired Composite Electrolytes for Load‐Bearing Solid‐State Lithium‐Metal Batteries

Advanced Materials / Nov 29, 2019

Li, A., Liao, X., Zhang, H., Shi, L., Wang, P., Cheng, Q., Borovilas, J., Li, Z., Huang, W., Fu, Z., Dontigny, M., Zaghib, K., Myers, K., Chuan, X., Chen, X., & Yang, Y. (2019). Nacre‐Inspired Composite Electrolytes for Load‐Bearing Solid‐State Lithium‐Metal Batteries. Advanced Materials, 32(2), 1905517. Portico. https://doi.org/10.1002/adma.201905517

Nanocable with thick active intermediate layer for stable and high-areal-capacity sodium storage

Nano Energy / Dec 01, 2020

Chen, Y., Yousaf, M., Wang, Y., Wang, Z., Lou, S., Han, R. P. S., Yang, Y., & Cao, A. (2020). Nanocable with thick active intermediate layer for stable and high-areal-capacity sodium storage. Nano Energy, 78, 105265. https://doi.org/10.1016/j.nanoen.2020.105265

Paints as a Scalable and Effective Radiative Cooling Technology for Buildings

Joule / Jul 01, 2020

Mandal, J., Yang, Y., Yu, N., & Raman, A. P. (2020). Paints as a Scalable and Effective Radiative Cooling Technology for Buildings. Joule, 4(7), 1350–1356. https://doi.org/10.1016/j.joule.2020.04.010

Single-atom Catalytic Materials for Lean-electrolyte Ultrastable Lithium–Sulfur Batteries

Nano Letters / Jun 24, 2020

Lu, C., Chen, Y., Yang, Y., & Chen, X. (2020). Single-atom Catalytic Materials for Lean-electrolyte Ultrastable Lithium–Sulfur Batteries. Nano Letters, 20(7), 5522–5530. https://doi.org/10.1021/acs.nanolett.0c02167

Transport and Morphology of a Proton Exchange Membrane Based on a Doubly Functionalized Perfluorosulfonic Imide Side Chain Perflourinated Polymer

Chemistry of Materials / Dec 02, 2019

Kusoglu, A., Vezzù, K., Hegde, G. A., Nawn, G., Motz, A. R., Sarode, H. N., Haugen, G. M., Yang, Y., Seifert, S., Yandrasits, M. A., Hamrock, S., Maupin, C. M., Weber, A. Z., Di Noto, V., & Herring, A. M. (2019). Transport and Morphology of a Proton Exchange Membrane Based on a Doubly Functionalized Perfluorosulfonic Imide Side Chain Perflourinated Polymer. Chemistry of Materials, 32(1), 38–59. https://doi.org/10.1021/acs.chemmater.8b05012

New Insights into Nail Penetration of Li‐Ion Batteries: Effects of Heterogeneous Contact Resistance

Batteries & Supercaps / Jul 18, 2019

Chen, M., Ye, Q., Shi, C., Cheng, Q., Qie, B., Liao, X., Zhai, H., He, Y., & Yang, Y. (2019). New Insights into Nail Penetration of Li‐Ion Batteries: Effects of Heterogeneous Contact Resistance. Batteries & Supercaps, 2(10), 874–881. Portico. https://doi.org/10.1002/batt.201900081

A Scalable Dealloying Technique To Create Thermally Stable Plasmonic Nickel Selective Solar Absorbers

ACS Applied Energy Materials / Aug 16, 2019

Chen, M., Mandal, J., Ye, Q., Li, A., Cheng, Q., Gong, T., Jin, T., He, Y., Yu, N., & Yang, Y. (2019). A Scalable Dealloying Technique To Create Thermally Stable Plasmonic Nickel Selective Solar Absorbers. ACS Applied Energy Materials, 2(9), 6551–6557. https://doi.org/10.1021/acsaem.9b01112

Direct thermal charging cell for converting low-grade heat to electricity

Nature Communications / Sep 12, 2019

Wang, X., Huang, Y.-T., Liu, C., Mu, K., Li, K. H., Wang, S., Yang, Y., Wang, L., Su, C.-H., & Feng, S.-P. (2019). Direct thermal charging cell for converting low-grade heat to electricity. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-12144-2

Ultra-Thin Conductive Graphitic Carbon Nitride Assembly through van der Waals Epitaxy toward High-Energy-Density Flexible Supercapacitors

Nano Letters / May 29, 2019

Lu, C., Yang, Y., & Chen, X. (2019). Ultra-Thin Conductive Graphitic Carbon Nitride Assembly through van der Waals Epitaxy toward High-Energy-Density Flexible Supercapacitors. Nano Letters, 19(6), 4103–4111. https://doi.org/10.1021/acs.nanolett.9b01511

Microporous Battery Electrodes from Molecular Cluster Precursors

ACS Applied Materials & Interfaces / Mar 18, 2019

Aydt, A. P., Qie, B., Pinkard, A., Yang, L., Cheng, Q., Billinge, S. J. L., Yang, Y., & Roy, X. (2019). Microporous Battery Electrodes from Molecular Cluster Precursors. ACS Applied Materials & Interfaces, 11(12), 11292–11297. https://doi.org/10.1021/acsami.8b18149

Designing Flexible Lithium-Ion Batteries by Structural Engineering

ACS Energy Letters / Feb 04, 2019

Qian, G., Liao, X., Zhu, Y., Pan, F., Chen, X., & Yang, Y. (2019). Designing Flexible Lithium-Ion Batteries by Structural Engineering. ACS Energy Letters, 4(3), 690–701. https://doi.org/10.1021/acsenergylett.8b02496

A CoHCF system with enhanced energy conversion efficiency for low-grade heat harvesting

Journal of Materials Chemistry A / Jan 01, 2019

Jiang, J., Tian, H., He, X., Zeng, Q., Niu, Y., Zhou, T., Yang, Y., & Wang, C. (2019). A CoHCF system with enhanced energy conversion efficiency for low-grade heat harvesting. Journal of Materials Chemistry A, 7(41), 23862–23867. https://doi.org/10.1039/c9ta02426c

Accordion-like stretchable Li-ion batteries with high energy density

Energy Storage Materials / Feb 01, 2019

Shi, C., Wang, T., Liao, X., Qie, B., Yang, P., Chen, M., Wang, X., Srinivasan, A., Cheng, Q., Ye, Q., Li, A. C., Chen, X., & Yang, Y. (2019). Accordion-like stretchable Li-ion batteries with high energy density. Energy Storage Materials, 17, 136–142. https://doi.org/10.1016/j.ensm.2018.11.019

Degradation mechanisms of high capacity 18650 cells containing Si-graphite anode and nickel-rich NMC cathode

Electrochimica Acta / Feb 01, 2019

Li, X., Colclasure, A. M., Finegan, D. P., Ren, D., Shi, Y., Feng, X., Cao, L., Yang, Y., & Smith, K. (2019). Degradation mechanisms of high capacity 18650 cells containing Si-graphite anode and nickel-rich NMC cathode. Electrochimica Acta, 297, 1109–1120. https://doi.org/10.1016/j.electacta.2018.11.194

Full Dissolution of the Whole Lithium Sulfide Family (Li 2 S 8 to Li 2 S) in a Safe Eutectic Solvent for Rechargeable Lithium–Sulfur Batteries

Angewandte Chemie International Edition / Mar 26, 2019

Cheng, Q., Xu, W., Qin, S., Das, S., Jin, T., Li, A., Li, A. C., Qie, B., Yao, P., Zhai, H., Shi, C., Yong, X., & Yang, Y. (2019). Full Dissolution of the Whole Lithium Sulfide Family (Li 2 S 8 to Li 2 S) in a Safe Eutectic Solvent for Rechargeable Lithium–Sulfur Batteries. Angewandte Chemie International Edition, 58(17), 5557–5561. Portico. https://doi.org/10.1002/anie.201812611

High‐Energy‐Density Foldable Battery Enabled by Zigzag‐Like Design

Advanced Energy Materials / Dec 07, 2018

Liao, X., Shi, C., Wang, T., Qie, B., Chen, Y., Yang, P., Cheng, Q., Zhai, H., Chen, M., Wang, X., Chen, X., & Yang, Y. (2018). High‐Energy‐Density Foldable Battery Enabled by Zigzag‐Like Design. Advanced Energy Materials, 9(4), 1802998. Portico. https://doi.org/10.1002/aenm.201802998

LayerCode

ACM Transactions on Graphics / Aug 31, 2019

Maia, H. T., Li, D., Yang, Y., & Zheng, C. (2019). LayerCode. ACM Transactions on Graphics, 38(4), 1–14. https://doi.org/10.1145/3306346.3322960

Nonflammable, Low-Cost, and Fluorine-Free Solvent for Liquid Electrolyte of Rechargeable Lithium Metal Batteries

ACS Applied Materials & Interfaces / Apr 23, 2019

Jin, T., Wang, Y., Hui, Z., Qie, B., Li, A., Paley, D., Xu, B., Wang, X., Chitu, A., Zhai, H., Gong, T., & Yang, Y. (2019). Nonflammable, Low-Cost, and Fluorine-Free Solvent for Liquid Electrolyte of Rechargeable Lithium Metal Batteries. ACS Applied Materials & Interfaces, 11(19), 17333–17340. https://doi.org/10.1021/acsami.8b22156

Porous Polymers with Switchable Optical Transmittance for Optical and Thermal Regulation

Joule / Dec 01, 2019

Mandal, J., Jia, M., Overvig, A., Fu, Y., Che, E., Yu, N., & Yang, Y. (2019). Porous Polymers with Switchable Optical Transmittance for Optical and Thermal Regulation. Joule, 3(12), 3088–3099. https://doi.org/10.1016/j.joule.2019.09.016

Porous insulating matrix for lithium metal anode with long cycling stability and high power

Energy Storage Materials / Feb 01, 2019

Xu, B., Zhai, H., Liao, X., Qie, B., Mandal, J., Gong, T., Tan, L., Yang, X., Sun, K., Cheng, Q., Chen, M., Miao, Y., Wei, M., Zhu, B., Fu, Y., Li, A., Chen, X., Min, W., Nan, C.-W., … Yang, Y. (2019). Porous insulating matrix for lithium metal anode with long cycling stability and high power. Energy Storage Materials, 17, 31–37. https://doi.org/10.1016/j.ensm.2018.11.035

Rechargeable solid-state lithium metal batteries with vertically aligned ceramic nanoparticle/polymer composite electrolyte

Nano Energy / Jun 01, 2019

Wang, X., Zhai, H., Qie, B., Cheng, Q., Li, A., Borovilas, J., Xu, B., Shi, C., Jin, T., Liao, X., Li, Y., He, X., Du, S., Fu, Y., Dontigny, M., Zaghib, K., & Yang, Y. (2019). Rechargeable solid-state lithium metal batteries with vertically aligned ceramic nanoparticle/polymer composite electrolyte. Nano Energy, 60, 205–212. https://doi.org/10.1016/j.nanoen.2019.03.051

Stabilizing Polyether Electrolyte with a 4 V Metal Oxide Cathode by Nanoscale Interfacial Coating

ACS Applied Materials & Interfaces / Jul 17, 2019

Zhai, H., Gong, T., Xu, B., Cheng, Q., Paley, D., Qie, B., Jin, T., Fu, Z., Tan, L., Lin, Y.-H., Nan, C.-W., & Yang, Y. (2019). Stabilizing Polyether Electrolyte with a 4 V Metal Oxide Cathode by Nanoscale Interfacial Coating. ACS Applied Materials & Interfaces, 11(32), 28774–28780. https://doi.org/10.1021/acsami.9b04932

Stabilizing Solid Electrolyte-Anode Interface in Li-Metal Batteries by Boron Nitride-Based Nanocomposite Coating

Joule / Jun 01, 2019

Cheng, Q., Li, A., Li, N., Li, S., Zangiabadi, A., Li, T.-D., Huang, W., Li, A. C., Jin, T., Song, Q., Xu, W., Ni, N., Zhai, H., Dontigny, M., Zaghib, K., Chuan, X., Su, D., Yan, K., & Yang, Y. (2019). Stabilizing Solid Electrolyte-Anode Interface in Li-Metal Batteries by Boron Nitride-Based Nanocomposite Coating. Joule, 3(6), 1510–1522. https://doi.org/10.1016/j.joule.2019.03.022

Structured Polymers for High-Performance Passive Daytime Radiative Cooling

Conference on Lasers and Electro-Optics / Jan 01, 2019

Mandal, J., Yu, N., & Yang, Y. (2019). Structured Polymers for High-Performance Passive Daytime Radiative Cooling. Conference on Lasers and Electro-Optics. https://doi.org/10.1364/cleo_at.2019.ath1i.1

The impact of alkyl tri‐methyl ammonium side chains on perfluorinated ionic membranes for electrochemical applications

Journal of Polymer Science Part B: Polymer Physics / Apr 05, 2019

Divekar, A. G., Kuo, M., Park, A. M., Motz, A. R., Page‐Belknap, Z. S., Owczarczyk, Z., Long, H., Seifert, S., Maupin, C. M., Yandrasits, M. A., Yang, Y., Pivovar, B. S., & Herring, A. M. (2019). The impact of alkyl tri‐methyl ammonium side chains on perfluorinated ionic membranes for electrochemical applications. Journal of Polymer Science Part B: Polymer Physics, 57(11), 700–712. Portico. https://doi.org/10.1002/polb.24825

Thermally stable, nano-porous and eco-friendly sodium alginate/attapulgite separator for lithium-ion batteries

Energy Storage Materials / Nov 01, 2019

Song, Q., Li, A., Shi, L., Qian, C., Feric, T. G., Fu, Y., Zhang, H., Li, Z., Wang, P., Li, Z., Zhai, H., Wang, X., Dontigny, M., Zaghib, K., Park, A.-H. (Alissa), Myers, K., Chuan, X., & Yang, Y. (2019). Thermally stable, nano-porous and eco-friendly sodium alginate/attapulgite separator for lithium-ion batteries. Energy Storage Materials, 22, 48–56. https://doi.org/10.1016/j.ensm.2019.06.033

Vertically-aligned nanostructures for electrochemical energy storage

Nano Research / Apr 24, 2019

Wang, X., Wang, T., Borovilas, J., He, X., Du, S., & Yang, Y. (2019). Vertically-aligned nanostructures for electrochemical energy storage. Nano Research, 12(9), 2002–2017. https://doi.org/10.1007/s12274-019-2392-x

Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling

Science / Oct 19, 2018

Mandal, J., Fu, Y., Overvig, A. C., Jia, M., Sun, K., Shi, N. N., Zhou, H., Xiao, X., Yu, N., & Yang, Y. (2018). Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science, 362(6412), 315–319. https://doi.org/10.1126/science.aat9513

Li 4 Ti 5 O 12 : A Visible‐to‐Infrared Broadband Electrochromic Material for Optical and Thermal Management

Advanced Functional Materials / Jul 31, 2018

Mandal, J., Du, S., Dontigny, M., Zaghib, K., Yu, N., & Yang, Y. (2018). Li 4 Ti 5 O 12  : A Visible‐to‐Infrared Broadband Electrochromic Material for Optical and Thermal Management. Advanced Functional Materials, 28(36), 1802180. Portico. https://doi.org/10.1002/adfm.201802180

Designing Three-Dimensional Architectures for High-Performance Electron Accepting Pseudocapacitors

Journal of the American Chemical Society / Aug 24, 2018

Peurifoy, S. R., Russell, J. C., Sisto, T. J., Yang, Y., Roy, X., & Nuckolls, C. (2018). Designing Three-Dimensional Architectures for High-Performance Electron Accepting Pseudocapacitors. Journal of the American Chemical Society, 140(35), 10960–10964. https://doi.org/10.1021/jacs.8b07365

Rate-Limiting Step in Batteries with Metal Oxides as the Energy Materials

ACS Applied Materials & Interfaces / Feb 13, 2018

Wang, Q., Shang, M., Zhang, Y., Yang, Y., & Wang, Y. (2018). Rate-Limiting Step in Batteries with Metal Oxides as the Energy Materials. ACS Applied Materials & Interfaces, 10(8), 7162–7170. https://doi.org/10.1021/acsami.7b19541

Bioinspired, Spine‐Like, Flexible, Rechargeable Lithium‐Ion Batteries with High Energy Density

Advanced Materials / Jan 31, 2018

Qian, G., Zhu, B., Liao, X., Zhai, H., Srinivasan, A., Fritz, N. J., Cheng, Q., Ning, M., Qie, B., Li, Y., Yuan, S., Zhu, J., Chen, X., & Yang, Y. (2018). Bioinspired, Spine‐Like, Flexible, Rechargeable Lithium‐Ion Batteries with High Energy Density. Advanced Materials, 30(12), 1704947. Portico. https://doi.org/10.1002/adma.201704947

Characterization of Water Self-Diffusion in Human Stratum Corneum

Journal of Pharmaceutical Sciences / Apr 01, 2018

Kodiweera, C., Yang, Y., & Bunge, A. L. (2018). Characterization of Water Self-Diffusion in Human Stratum Corneum. Journal of Pharmaceutical Sciences, 107(4), 1131–1142. https://doi.org/10.1016/j.xphs.2017.12.011

Heteropoly acid functionalized fluoroelastomer with outstanding chemical durability and performance for vehicular fuel cells

Energy & Environmental Science / Jan 01, 2018

Motz, A. R., Kuo, M.-C., Horan, J. L., Yadav, R., Seifert, S., Pandey, T. P., Galioto, S., Yang, Y., Dale, N. V., Hamrock, S. J., & Herring, A. M. (2018). Heteropoly acid functionalized fluoroelastomer with outstanding chemical durability and performance for vehicular fuel cells. Energy & Environmental Science, 11(6), 1499–1509. https://doi.org/10.1039/c8ee00545a

Nanostructured fibers as a versatile photonic platform: radiative cooling and waveguiding through transverse Anderson localization

Light: Science & Applications / Jul 18, 2018

Shi, N. N., Tsai, C.-C., Carter, M. J., Mandal, J., Overvig, A. C., Sfeir, M. Y., Lu, M., Craig, C. L., Bernard, G. D., Yang, Y., & Yu, N. (2018). Nanostructured fibers as a versatile photonic platform: radiative cooling and waveguiding through transverse Anderson localization. Light: Science & Applications, 7(1). https://doi.org/10.1038/s41377-018-0033-x

Operando and three-dimensional visualization of anion depletion and lithium growth by stimulated Raman scattering microscopy

Nature Communications / Jul 30, 2018

Cheng, Q., Wei, L., Liu, Z., Ni, N., Sang, Z., Zhu, B., Xu, W., Chen, M., Miao, Y., Chen, L.-Q., Min, W., & Yang, Y. (2018). Operando and three-dimensional visualization of anion depletion and lithium growth by stimulated Raman scattering microscopy. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-05289-z

PVDF/Palygorskite Nanowire Composite Electrolyte for 4 V Rechargeable Lithium Batteries with High Energy Density

Nano Letters / Aug 31, 2018

Yao, P., Zhu, B., Zhai, H., Liao, X., Zhu, Y., Xu, W., Cheng, Q., Jayyosi, C., Li, Z., Zhu, J., Myers, K. M., Chen, X., & Yang, Y. (2018). PVDF/Palygorskite Nanowire Composite Electrolyte for 4 V Rechargeable Lithium Batteries with High Energy Density. Nano Letters, 18(10), 6113–6120. https://doi.org/10.1021/acs.nanolett.8b01421

Solvation Dynamics of HEHEHP Ligand at the Liquid–Liquid Interface

The Journal of Physical Chemistry B / May 14, 2018

Ta, A. T., Hegde, G. A., Etz, B. D., Baldwin, A. G., Yang, Y., Shafer, J. C., Jensen, M. P., Maupin, C. M., & Vyas, S. (2018). Solvation Dynamics of HEHEHP Ligand at the Liquid–Liquid Interface. The Journal of Physical Chemistry B, 122(22), 5999–6006. https://doi.org/10.1021/acs.jpcb.8b03165

Visualizing ion diffusion in battery systems by fluorescence microscopy: A case study on the dissolution of LiMn2O4

Nano Energy / Mar 01, 2018

Qiao, Y., Zhou, Z., Chen, Z., Du, S., Cheng, Q., Zhai, H., Fritz, N. J., Du, Q., & Yang, Y. (2018). Visualizing ion diffusion in battery systems by fluorescence microscopy: A case study on the dissolution of LiMn2O4. Nano Energy, 45, 68–74. https://doi.org/10.1016/j.nanoen.2017.12.036

Molecular Materials for Nonaqueous Flow Batteries with a High Coulombic Efficiency and Stable Cycling

Nano Letters / Nov 10, 2017

Milton, M., Cheng, Q., Yang, Y., Nuckolls, C., Hernández Sánchez, R., & Sisto, T. J. (2017). Molecular Materials for Nonaqueous Flow Batteries with a High Coulombic Efficiency and Stable Cycling. Nano Letters, 17(12), 7859–7863. https://doi.org/10.1021/acs.nanolett.7b04131

Scalable, “Dip‐and‐Dry” Fabrication of a Wide‐Angle Plasmonic Selective Absorber for High‐Efficiency Solar–Thermal Energy Conversion

Advanced Materials / Aug 28, 2017

Mandal, J., Wang, D., Overvig, A. C., Shi, N. N., Paley, D., Zangiabadi, A., Cheng, Q., Barmak, K., Yu, N., & Yang, Y. (2017). Scalable, “Dip‐and‐Dry” Fabrication of a Wide‐Angle Plasmonic Selective Absorber for High‐Efficiency Solar–Thermal Energy Conversion. Advanced Materials, 29(41), 1702156. Portico. https://doi.org/10.1002/adma.201702156

Selective Solar Absorbers: Scalable, “Dip-and-Dry” Fabrication of a Wide-Angle Plasmonic Selective Absorber for High-Efficiency Solar-Thermal Energy Conversion (Adv. Mater. 41/2017)

Advanced Materials / Nov 01, 2017

Mandal, J., Wang, D., Overvig, A. C., Shi, N. N., Paley, D., Zangiabadi, A., Cheng, Q., Barmak, K., Yu, N., & Yang, Y. (2017). Selective Solar Absorbers: Scalable, “Dip-and-Dry” Fabrication of a Wide-Angle Plasmonic Selective Absorber for High-Efficiency Solar-Thermal Energy Conversion (Adv. Mater. 41/2017). Advanced Materials, 29(41). Portico. https://doi.org/10.1002/adma.201770299

Thermally Regenerative Electrochemical Cycle for Low-Grade Heat Harvesting

ACS Energy Letters / Sep 13, 2017

Gao, C., Lee, S. W., & Yang, Y. (2017). Thermally Regenerative Electrochemical Cycle for Low-Grade Heat Harvesting. ACS Energy Letters, 2(10), 2326–2334. https://doi.org/10.1021/acsenergylett.7b00568

A Flexible Solid Composite Electrolyte with Vertically Aligned and Connected Ion-Conducting Nanoparticles for Lithium Batteries

Nano Letters / Apr 24, 2017

Zhai, H., Xu, P., Ning, M., Cheng, Q., Mandal, J., & Yang, Y. (2017). A Flexible Solid Composite Electrolyte with Vertically Aligned and Connected Ion-Conducting Nanoparticles for Lithium Batteries. Nano Letters, 17(5), 3182–3187. https://doi.org/10.1021/acs.nanolett.7b00715

12-Silicotungstic Acid Doped Phosphoric Acid Imbibed Polybenzimidazole for Enhanced Protonic Conductivity for High Temperature Fuel Cell Applications

Journal of The Electrochemical Society / Jan 01, 2017

Nguyen, V. T., Ziolo, J. T., Yang, Y., Diercks, D., Alfaro, S. M., Hjuler, H. A., Steenberg, T., & Herring, A. M. (2017). 12-Silicotungstic Acid Doped Phosphoric Acid Imbibed Polybenzimidazole for Enhanced Protonic Conductivity for High Temperature Fuel Cell Applications. Journal of The Electrochemical Society, 164(6), F504–F513. https://doi.org/10.1149/2.0331706jes

Nanoporous Hybrid Electrolytes for High‐Energy Batteries Based on Reactive Metal Anodes

Advanced Energy Materials / Jan 06, 2017

Tu, Z., Zachman, M. J., Choudhury, S., Wei, S., Ma, L., Yang, Y., Kourkoutis, L. F., & Archer, L. A. (2017). Nanoporous Hybrid Electrolytes for High‐Energy Batteries Based on Reactive Metal Anodes. Advanced Energy Materials, 7(8), 1602367. Portico. https://doi.org/10.1002/aenm.201602367

The structure of tributyl phosphate solutions: Nitric acid, uranium (VI), and zirconium (IV)

Journal of Molecular Liquids / Nov 01, 2017

Baldwin, A. G., Servis, M. J., Yang, Y., Bridges, N. J., Wu, D. T., & Shafer, J. C. (2017). The structure of tributyl phosphate solutions: Nitric acid, uranium (VI), and zirconium (IV). Journal of Molecular Liquids, 246, 225–235. https://doi.org/10.1016/j.molliq.2017.09.032

Understanding Anion, Water, and Methanol Transport in a Polyethylene-b-poly(vinylbenzyl trimethylammonium) Copolymer Anion-Exchange Membrane for Electrochemical Applications

The Journal of Physical Chemistry C / Jan 19, 2017

Sarode, H. N., Yang, Y., Motz, A. R., Li, Y., Knauss, D. M., Seifert, S., & Herring, A. M. (2017). Understanding Anion, Water, and Methanol Transport in a Polyethylene-b-poly(vinylbenzyl trimethylammonium) Copolymer Anion-Exchange Membrane for Electrochemical Applications. The Journal of Physical Chemistry C, 121(4), 2035–2045. https://doi.org/10.1021/acs.jpcc.6b09205

Ambient-Air Stable Lithiated Anode for Rechargeable Li-Ion Batteries with High Energy Density

Nano Letters / Oct 24, 2016

Cao, Z., Xu, P., Zhai, H., Du, S., Mandal, J., Dontigny, M., Zaghib, K., & Yang, Y. (2016). Ambient-Air Stable Lithiated Anode for Rechargeable Li-Ion Batteries with High Energy Density. Nano Letters, 16(11), 7235–7240. https://doi.org/10.1021/acs.nanolett.6b03655

Sea urchin-like NiCoO2@C nanocomposites for Li-ion batteries and supercapacitors

Nano Energy / Sep 01, 2016

Liang, J., Xi, K., Tan, G., Chen, S., Zhao, T., Coxon, P. R., Kim, H.-K., Ding, S., Yang, Y., Kumar, R. V., & Lu, J. (2016). Sea urchin-like NiCoO2@C nanocomposites for Li-ion batteries and supercapacitors. Nano Energy, 27, 457–465. https://doi.org/10.1016/j.nanoen.2016.06.032

Thermally conductive separator with hierarchical nano/microstructures for improving thermal management of batteries

Nano Energy / Apr 01, 2016

Yang, Y., Huang, X., Cao, Z., & Chen, G. (2016). Thermally conductive separator with hierarchical nano/microstructures for improving thermal management of batteries. Nano Energy, 22, 301–309. https://doi.org/10.1016/j.nanoen.2016.01.026

A Highly Hydroxide Conductive, Chemically Stable Anion Exchange Membrane, Poly(2,6 dimethyl 1,4 phenylene oxide)-b-Poly(vinyl benzyl trimethyl ammonium), for Electrochemical Applications

Journal of The Electrochemical Society / Jan 01, 2016

Pandey, T. P., Sarode, H. N., Yang, Y., Yang, Y., Vezzù, K., Noto, V. D., Seifert, S., Knauss, D. M., Liberatore, M. W., & Herring, A. M. (2016). A Highly Hydroxide Conductive, Chemically Stable Anion Exchange Membrane, Poly(2,6 dimethyl 1,4 phenylene oxide)-b-Poly(vinyl benzyl trimethyl ammonium), for Electrochemical Applications. Journal of The Electrochemical Society, 163(7), H513–H520. https://doi.org/10.1149/2.0421607jes

Anion exchange membranes composed of a poly(2,6-dimethyl-1,4-phenylene oxide) random copolymer functionalized with a bulky phosphonium cation

Journal of Membrane Science / May 01, 2016

Liu, Y., Zhang, B., Kinsinger, C. L., Yang, Y., Seifert, S., Yan, Y., Mark Maupin, C., Liberatore, M. W., & Herring, A. M. (2016). Anion exchange membranes composed of a poly(2,6-dimethyl-1,4-phenylene oxide) random copolymer functionalized with a bulky phosphonium cation. Journal of Membrane Science, 506, 50–59. https://doi.org/10.1016/j.memsci.2016.01.042

Characterization of Water and a Model Lipophilic Compound in Human Stratum Corneum by NMR Spectroscopy and Equilibrium Sorption

Journal of Pharmaceutical Sciences / Nov 01, 2016

Kodiweera, C., Romonchuk, W. J., Yang, Y., & Bunge, A. L. (2016). Characterization of Water and a Model Lipophilic Compound in Human Stratum Corneum by NMR Spectroscopy and Equilibrium Sorption. Journal of Pharmaceutical Sciences, 105(11), 3376–3386. https://doi.org/10.1016/j.xphs.2016.08.010

Novel Processing of a Poly(phenyleneoxide) −b–Poly(vinylbenzyltrimethylammonium) Copolymer Anion Exchange Membrane; The Effect On Mechanical And Transport Properties

Electrochimica Acta / Dec 01, 2016

Pandey, T. P., Seifert, S., Yang, Y., Yang, Y., Knauss, D. M., Liberatore, M. W., & Herring, A. M. (2016). Novel Processing of a Poly(phenyleneoxide) −b–Poly(vinylbenzyltrimethylammonium) Copolymer Anion Exchange Membrane; The Effect On Mechanical And Transport Properties. Electrochimica Acta, 222, 1545–1554. https://doi.org/10.1016/j.electacta.2016.11.137

Surface Modification of Gd Nanoparticles with pH-Responsive Block Copolymers for Use As Smart MRI Contrast Agents

ACS Applied Materials & Interfaces / Feb 09, 2016

Zhu, L., Yang, Y., Farquhar, K., Wang, J., Tian, C., Ranville, J., & Boyes, S. G. (2016). Surface Modification of Gd Nanoparticles with pH-Responsive Block Copolymers for Use As Smart MRI Contrast Agents. ACS Applied Materials & Interfaces, 8(7), 5040–5050. https://doi.org/10.1021/acsami.5b12463

Tributyl Phosphate Aggregation in the Presence of Metals: An Assessment Using Diffusion NMR Spectroscopy

The Journal of Physical Chemistry B / Nov 16, 2016

Baldwin, A. G., Yang, Y., Bridges, N. J., & Braley, J. C. (2016). Tributyl Phosphate Aggregation in the Presence of Metals: An Assessment Using Diffusion NMR Spectroscopy. The Journal of Physical Chemistry B, 120(47), 12184–12192. https://doi.org/10.1021/acs.jpcb.6b09154

“Thermal Charging” Phenomenon in Electrical Double Layer Capacitors

Nano Letters / Aug 07, 2015

Wang, J., Feng, S.-P., Yang, Y., Hau, N. Y., Munro, M., Ferreira-Yang, E., & Chen, G. (2015). “Thermal Charging” Phenomenon in Electrical Double Layer Capacitors. Nano Letters, 15(9), 5784–5790. https://doi.org/10.1021/acs.nanolett.5b01761

Slurryless Li2S/Reduced Graphene Oxide Cathode Paper for High-Performance Lithium Sulfur Battery

Nano Letters / Feb 05, 2015

Wang, C., Wang, X., Yang, Y., Kushima, A., Chen, J., Huang, Y., & Li, J. (2015). Slurryless Li2S/Reduced Graphene Oxide Cathode Paper for High-Performance Lithium Sulfur Battery. Nano Letters, 15(3), 1796–1802. https://doi.org/10.1021/acs.nanolett.5b00112

Hydroxide Transport in Next Generation Anion Exchange Membranes

ECS Transactions / Sep 14, 2015

Sarode, H. N., Pandey, T. P., Yang, Y., Knauss, D. M., Coughlin, E. B., Liberatore, M. W., & Herring, A. M. (2015). Hydroxide Transport in Next Generation Anion Exchange Membranes. ECS Transactions, 69(17), 363–367. https://doi.org/10.1149/06917.0363ecst

Interplay between water uptake, ion interactions, and conductivity in an e-beam grafted poly(ethylene-co-tetrafluoroethylene) anion exchange membrane

Physical Chemistry Chemical Physics / Jan 01, 2015

Pandey, T. P., Maes, A. M., Sarode, H. N., Peters, B. D., Lavina, S., Vezzù, K., Yang, Y., Poynton, S. D., Varcoe, J. R., Seifert, S., Liberatore, M. W., Di Noto, V., & Herring, A. M. (2015). Interplay between water uptake, ion interactions, and conductivity in an e-beam grafted poly(ethylene-co-tetrafluoroethylene) anion exchange membrane. Physical Chemistry Chemical Physics, 17(6), 4367–4378. https://doi.org/10.1039/c4cp05755d

Random and Block Sulfonated Polyaramides as Advanced Proton Exchange Membranes

The Journal of Physical Chemistry C / Oct 23, 2015

Kinsinger, C. L., Liu, Y., Liu, F., Yang, Y., Seifert, S., Knauss, D. M., Herring, A. M., & Maupin, C. M. (2015). Random and Block Sulfonated Polyaramides as Advanced Proton Exchange Membranes. The Journal of Physical Chemistry C, 119(44), 24724–24732. https://doi.org/10.1021/acs.jpcc.5b06857

Thermodynamically Favorable Conversion of Hydrogen Sulfide into Valuable Products through Reaction with Sodium Naphthalenide

ChemPlusChem / Jul 23, 2015

Li, X., Morrish, R. M., Yang, Y., Wolden, C. A., & Yang, Y. (2015). Thermodynamically Favorable Conversion of Hydrogen Sulfide into Valuable Products through Reaction with Sodium Naphthalenide. ChemPlusChem, 80(10), 1508–1512. Portico. https://doi.org/10.1002/cplu.201500299

Charging-free electrochemical system for harvesting low-grade thermal energy

Proceedings of the National Academy of Sciences / Nov 17, 2014

Yang, Y., Lee, S. W., Ghasemi, H., Loomis, J., Li, X., Kraemer, D., Zheng, G., Cui, Y., & Chen, G. (2014). Charging-free electrochemical system for harvesting low-grade thermal energy. Proceedings of the National Academy of Sciences, 111(48), 17011–17016. https://doi.org/10.1073/pnas.1415097111

Membrane-Free Battery for Harvesting Low-Grade Thermal Energy

Nano Letters / Oct 16, 2014

Yang, Y., Loomis, J., Ghasemi, H., Lee, S. W., Wang, Y. J., Cui, Y., & Chen, G. (2014). Membrane-Free Battery for Harvesting Low-Grade Thermal Energy. Nano Letters, 14(11), 6578–6583. https://doi.org/10.1021/nl5032106

An electrochemical system for efficiently harvesting low-grade heat energy

Nature Communications / May 21, 2014

Lee, S. W., Yang, Y., Lee, H.-W., Ghasemi, H., Kraemer, D., Chen, G., & Cui, Y. (2014). An electrochemical system for efficiently harvesting low-grade heat energy. Nature Communications, 5(1). https://doi.org/10.1038/ncomms4942

A Combined Theoretical and Experimental Investigation of the Transport Properties of Water in a Perfluorosulfonic Acid Proton Exchange Membrane Doped with the Heteropoly Acids, H3PW12O40 or H4SiW12O40

The Journal of Physical Chemistry C / Dec 27, 2013

Liu, Y., Sambasivarao, S. V., Horan, J. L., Yang, Y., Maupin, C. M., & Herring, A. M. (2013). A Combined Theoretical and Experimental Investigation of the Transport Properties of Water in a Perfluorosulfonic Acid Proton Exchange Membrane Doped with the Heteropoly Acids, H3PW12O40 or H4SiW12O40. The Journal of Physical Chemistry C, 118(2), 854–863. https://doi.org/10.1021/jp4099232

Anion Transport in a Chemically Stable, Sterically Bulky α-C Modified Imidazolium Functionalized Anion Exchange Membrane

The Journal of Physical Chemistry C / Jul 07, 2014

Liu, Y., Wang, J., Yang, Y., Brenner, T. M., Seifert, S., Yan, Y., Liberatore, M. W., & Herring, A. M. (2014). Anion Transport in a Chemically Stable, Sterically Bulky α-C Modified Imidazolium Functionalized Anion Exchange Membrane. The Journal of Physical Chemistry C, 118(28), 15136–15145. https://doi.org/10.1021/jp5027674

Chloride Enhances Fluoride Mobility in Anion Exchange Membrane/Polycationic Systems

The Journal of Physical Chemistry C / Dec 31, 2013

Tse, Y.-L. S., Sarode, H. N., Lindberg, G. E., Witten, T. A., Yang, Y., Herring, A. M., & Voth, G. A. (2013). Chloride Enhances Fluoride Mobility in Anion Exchange Membrane/Polycationic Systems. The Journal of Physical Chemistry C, 118(2), 845–853. https://doi.org/10.1021/jp409728a

Fast Proton Conduction Facilitated by Minimum Water in a Series of Divinylsilyl-11-silicotungstic Acid-co-Butyl Acrylate-co-Hexanediol Diacrylate Polymers

The Journal of Physical Chemistry C / Dec 27, 2013

Horan, J. L., Lingutla, A., Ren, H., Kuo, M.-C., Sachdeva, S., Yang, Y., Seifert, S., Greenlee, L. F., Yandrasits, M. A., Hamrock, S. J., Frey, M. H., & Herring, A. M. (2013). Fast Proton Conduction Facilitated by Minimum Water in a Series of Divinylsilyl-11-silicotungstic Acid-co-Butyl Acrylate-co-Hexanediol Diacrylate Polymers. The Journal of Physical Chemistry C, 118(1), 135–144. https://doi.org/10.1021/jp4089657

Insights into the Transport of Aqueous Quaternary Ammonium Cations: A Combined Experimental and Computational Study

The Journal of Physical Chemistry B / Jan 27, 2014

Sarode, H. N., Lindberg, G. E., Yang, Y., Felberg, L. E., Voth, G. A., & Herring, A. M. (2014). Insights into the Transport of Aqueous Quaternary Ammonium Cations: A Combined Experimental and Computational Study. The Journal of Physical Chemistry B, 118(5), 1363–1372. https://doi.org/10.1021/jp4085662

Lithium Silicide Nanocrystals: Synthesis, Chemical Stability, Thermal Stability, and Carbon Encapsulation

Inorganic Chemistry / Sep 29, 2014

Cloud, J. E., Wang, Y., Li, X., Yoder, T. S., Yang, Y., & Yang, Y. (2014). Lithium Silicide Nanocrystals: Synthesis, Chemical Stability, Thermal Stability, and Carbon Encapsulation. Inorganic Chemistry, 53(20), 11289–11297. https://doi.org/10.1021/ic501923s

High-performance hollow sulfur nanostructured battery cathode through a scalable, room temperature, one-step, bottom-up approach

Proceedings of the National Academy of Sciences / Apr 15, 2013

Li, W., Zheng, G., Yang, Y., Seh, Z. W., Liu, N., & Cui, Y. (2013). High-performance hollow sulfur nanostructured battery cathode through a scalable, room temperature, one-step, bottom-up approach. Proceedings of the National Academy of Sciences, 110(18), 7148–7153. https://doi.org/10.1073/pnas.1220992110

Amphiphilic Surface Modification of Hollow Carbon Nanofibers for Improved Cycle Life of Lithium Sulfur Batteries

Nano Letters / Feb 14, 2013

Zheng, G., Zhang, Q., Cha, J. J., Yang, Y., Li, W., Seh, Z. W., & Cui, Y. (2013). Amphiphilic Surface Modification of Hollow Carbon Nanofibers for Improved Cycle Life of Lithium Sulfur Batteries. Nano Letters, 13(3), 1265–1270. https://doi.org/10.1021/nl304795g

Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries

Nature Communications / Jan 08, 2013

Wei Seh, Z., Li, W., Cha, J. J., Zheng, G., Yang, Y., McDowell, M. T., Hsu, P.-C., & Cui, Y. (2013). Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nature Communications, 4(1). https://doi.org/10.1038/ncomms2327

A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage

Energy & Environmental Science / Jan 01, 2013

Yang, Y., Zheng, G., & Cui, Y. (2013). A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage. Energy & Environmental Science, 6(5), 1552. https://doi.org/10.1039/c3ee00072a

Correlation of chemical and physical properties of an Alaska heavy oil from the Ugnu formation

Fuel / Jan 01, 2013

Li, K., Akeredolu, B. A., Renehan, A. M., Yang, Y., Batzle, M., Evans, R. J., Dorgan, J. R., Liberatore, M. W., & Herring, A. M. (2013). Correlation of chemical and physical properties of an Alaska heavy oil from the Ugnu formation. Fuel, 103, 843–849. https://doi.org/10.1016/j.fuel.2012.07.037

Identifying and managing radiation damage during in situ transmission x-ray microscopy of Li-ion batteries

SPIE Proceedings / Sep 26, 2013

Nelson, J., Yang, Y., Misra, S., Andrews, J. C., Cui, Y., & Toney, M. F. (2013). Identifying and managing radiation damage during in situ transmission x-ray microscopy of Li-ion batteries. X-Ray Nanoimaging: Instruments and Methods. https://doi.org/10.1117/12.2027263

Imaging state of charge and its correlation to interaction variation in an LiMn0.75Fe0.25PO4 nanorods–graphene hybrid

Chemical Communications / Jan 01, 2013

Zhou, J., Wang, J., Hu, Y., Regier, T., Wang, H., Yang, Y., Cui, Y., & Dai, H. (2013). Imaging state of charge and its correlation to interaction variation in an LiMn0.75Fe0.25PO4 nanorods–graphene hybrid. Chemical Communications, 49(17), 1765. https://doi.org/10.1039/c3cc39015b

Nanostructured sulfur cathodes

Chemical Society Reviews / Jan 01, 2013

Yang, Y., Zheng, G., & Cui, Y. (2013). Nanostructured sulfur cathodes. Chemical Society Reviews, 42(7), 3018. https://doi.org/10.1039/c2cs35256g

Preparation and characterization of an alkaline anion exchange membrane from chlorinated poly(propylene) aminated with branched poly(ethyleneimine)

Electrochimica Acta / Nov 01, 2013

Maes, A. M., Pandey, T. P., Vandiver, M. A., Lundquist, L. K., Yang, Y., Horan, J. L., Krosovsky, A., Liberatore, M. W., Seifert, S., & Herring, A. M. (2013). Preparation and characterization of an alkaline anion exchange membrane from chlorinated poly(propylene) aminated with branched poly(ethyleneimine). Electrochimica Acta, 110, 260–266. https://doi.org/10.1016/j.electacta.2013.04.033

Synthesis and characterization of perfluoro quaternary ammonium anion exchange membranes

Journal of Polymer Science Part B: Polymer Physics / Sep 26, 2012

Vandiver, M. A., Horan, J. L., Yang, Y., Tansey, E. T., Seifert, S., Liberatore, M. W., & Herring, A. M. (2012). Synthesis and characterization of perfluoro quaternary ammonium anion exchange membranes. Journal of Polymer Science Part B: Polymer Physics, 51(24), 1761–1769. Portico. https://doi.org/10.1002/polb.23171

Understanding anion transport in an aminated trimethyl polyphenylene with high anionic conductivity

Journal of Polymer Science Part B: Polymer Physics / Sep 14, 2012

Janarthanan, R., Horan, J. L., Caire, B. R., Ziegler, Z. C., Yang, Y., Zuo, X., Liberatore, M. W., Hibbs, M. R., & Herring, A. M. (2012). Understanding anion transport in an aminated trimethyl polyphenylene with high anionic conductivity. Journal of Polymer Science Part B: Polymer Physics, 51(24), 1743–1750. Portico. https://doi.org/10.1002/polb.23164

High-Capacity Micrometer-Sized Li2S Particles as Cathode Materials for Advanced Rechargeable Lithium-Ion Batteries

Journal of the American Chemical Society / Sep 10, 2012

Yang, Y., Zheng, G., Misra, S., Nelson, J., Toney, M. F., & Cui, Y. (2012). High-Capacity Micrometer-Sized Li2S Particles as Cathode Materials for Advanced Rechargeable Lithium-Ion Batteries. Journal of the American Chemical Society, 134(37), 15387–15394. https://doi.org/10.1021/ja3052206

Passivation Coating on Electrospun Copper Nanofibers for Stable Transparent Electrodes

ACS Nano / May 07, 2012

Hsu, P.-C., Wu, H., Carney, T. J., McDowell, M. T., Yang, Y., Garnett, E. C., Li, M., Hu, L., & Cui, Y. (2012). Passivation Coating on Electrospun Copper Nanofibers for Stable Transparent Electrodes. ACS Nano, 6(6), 5150–5156. https://doi.org/10.1021/nn300844g

In Operando X-ray Diffraction and Transmission X-ray Microscopy of Lithium Sulfur Batteries

Journal of the American Chemical Society / Mar 30, 2012

Nelson, J., Misra, S., Yang, Y., Jackson, A., Liu, Y., Wang, H., Dai, H., Andrews, J. C., Cui, Y., & Toney, M. F. (2012). In Operando X-ray Diffraction and Transmission X-ray Microscopy of Lithium Sulfur Batteries. Journal of the American Chemical Society, 134(14), 6337–6343. https://doi.org/10.1021/ja2121926

Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control

Nature Nanotechnology / Mar 25, 2012

Wu, H., Chan, G., Choi, J. W., Ryu, I., Yao, Y., McDowell, M. T., Lee, S. W., Jackson, A., Yang, Y., Hu, L., & Cui, Y. (2012). Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control. Nature Nanotechnology, 7(5), 310–315. https://doi.org/10.1038/nnano.2012.35

Engineering Empty Space between Si Nanoparticles for Lithium-Ion Battery Anodes

Nano Letters / Jan 10, 2012

Wu, H., Zheng, G., Liu, N., Carney, T. J., Yang, Y., & Cui, Y. (2012). Engineering Empty Space between Si Nanoparticles for Lithium-Ion Battery Anodes. Nano Letters, 12(2), 904–909. https://doi.org/10.1021/nl203967r

A Hybrid Organic/Inorganic Ionomer from the Copolymerization of Vinylphosphonic Acid and Zirconium Vinylphosphonate

Macromolecules / Apr 20, 2012

Schlichting, G. J., Horan, J. L., Jessop, J. D., Nelson, S. E., Seifert, S., Yang, Y., & Herring, A. M. (2012). A Hybrid Organic/Inorganic Ionomer from the Copolymerization of Vinylphosphonic Acid and Zirconium Vinylphosphonate. Macromolecules, 45(9), 3874–3882. https://doi.org/10.1021/ma300196y

Advanced Hybrid Super Acidic Inorganic-Organic PEMs for Hotter and Drier Operation

ECS Transactions / Mar 15, 2013

Herring, A. M., Horan, J. L., Kuo, M.-C., Jessop, J. D., Schlichting, G. J., & Yang, Y. (2013). Advanced Hybrid Super Acidic Inorganic-Organic PEMs for Hotter and Drier Operation. ECS Transactions, 50(2), 1193–1198. https://doi.org/10.1149/05002.1193ecst

Rechargeable Li–O2 batteries with a covalently coupled MnCo2O4–graphene hybrid as an oxygen cathode catalyst

Energy & Environmental Science / Jan 01, 2012

Wang, H., Yang, Y., Liang, Y., Zheng, G., Li, Y., Cui, Y., & Dai, H. (2012). Rechargeable Li–O2 batteries with a covalently coupled MnCo2O4–graphene hybrid as an oxygen cathode catalyst. Energy & Environmental Science, 5(7), 7931. https://doi.org/10.1039/c2ee21746e

Improving the Performance of Lithium–Sulfur Batteries by Conductive Polymer Coating

ACS Nano / Oct 26, 2011

Yang, Y., Yu, G., Cha, J. J., Wu, H., Vosgueritchian, M., Yao, Y., Bao, Z., & Cui, Y. (2011). Improving the Performance of Lithium–Sulfur Batteries by Conductive Polymer Coating. ACS Nano, 5(11), 9187–9193. https://doi.org/10.1021/nn203436j

Symmetrical MnO2–Carbon Nanotube–Textile Nanostructures for Wearable Pseudocapacitors with High Mass Loading

ACS Nano / Oct 13, 2011

Hu, L., Chen, W., Xie, X., Liu, N., Yang, Y., Wu, H., Yao, Y., Pasta, M., Alshareef, H. N., & Cui, Y. (2011). Symmetrical MnO2–Carbon Nanotube–Textile Nanostructures for Wearable Pseudocapacitors with High Mass Loading. ACS Nano, 5(11), 8904–8913. https://doi.org/10.1021/nn203085j

Enhancing the Supercapacitor Performance of Graphene/MnO2 Nanostructured Electrodes by Conductive Wrapping

Nano Letters / Sep 28, 2011

Yu, G., Hu, L., Liu, N., Wang, H., Vosgueritchian, M., Yang, Y., Cui, Y., & Bao, Z. (2011). Enhancing the Supercapacitor Performance of Graphene/MnO2 Nanostructured Electrodes by Conductive Wrapping. Nano Letters, 11(10), 4438–4442. https://doi.org/10.1021/nl2026635

Hollow Carbon Nanofiber-Encapsulated Sulfur Cathodes for High Specific Capacity Rechargeable Lithium Batteries

Nano Letters / Sep 20, 2011

Zheng, G., Yang, Y., Cha, J. J., Hong, S. S., & Cui, Y. (2011). Hollow Carbon Nanofiber-Encapsulated Sulfur Cathodes for High Specific Capacity Rechargeable Lithium Batteries. Nano Letters, 11(10), 4462–4467. https://doi.org/10.1021/nl2027684

Oxide Nanostructures for Energy Storage

Functional Metal Oxide Nanostructures / Aug 11, 2011

Yang, Y., Choi, J. W., & Cui, Y. (2011). Oxide Nanostructures for Energy Storage. Springer Series in Materials Science, 269–302. https://doi.org/10.1007/978-1-4419-9931-3_12

Graphene-Wrapped Sulfur Particles as a Rechargeable Lithium–Sulfur Battery Cathode Material with High Capacity and Cycling Stability

Nano Letters / Jun 28, 2011

Wang, H., Yang, Y., Liang, Y., Robinson, J. T., Li, Y., Jackson, A., Cui, Y., & Dai, H. (2011). Graphene-Wrapped Sulfur Particles as a Rechargeable Lithium–Sulfur Battery Cathode Material with High Capacity and Cycling Stability. Nano Letters, 11(7), 2644–2647. https://doi.org/10.1021/nl200658a

Transparent lithium-ion batteries

Proceedings of the National Academy of Sciences / Jul 25, 2011

Yang, Y., Jeong, S., Hu, L., Wu, H., Lee, S. W., & Cui, Y. (2011). Transparent lithium-ion batteries. Proceedings of the National Academy of Sciences, 108(32), 13013–13018. https://doi.org/10.1073/pnas.1102873108

LiMn1−xFexPO4 Nanorods Grown on Graphene Sheets for Ultrahigh-Rate-Performance Lithium Ion Batteries

Angewandte Chemie International Edition / Jun 27, 2011

Wang, H., Yang, Y., Liang, Y., Cui, L.-F., Sanchez Casalongue, H., Li, Y., Hong, G., Cui, Y., & Dai, H. (2011). LiMn1−xFexPO4 Nanorods Grown on Graphene Sheets for Ultrahigh-Rate-Performance Lithium Ion Batteries. Angewandte Chemie International Edition, 50(32), 7364–7368. https://doi.org/10.1002/anie.201103163

Compressional Behavior of Bulk and Nanorod LiMn2O4 under Nonhydrostatic Stress

The Journal of Physical Chemistry C / May 04, 2011

Lin, Y., Yang, Y., Ma, H., Cui, Y., & Mao, W. L. (2011). Compressional Behavior of Bulk and Nanorod LiMn2O4 under Nonhydrostatic Stress. The Journal of Physical Chemistry C, 115(20), 9844–9849. https://doi.org/10.1021/jp112289h

New Nanostructured Li2S/Silicon Rechargeable Battery with High Specific Energy

SciVee / Feb 24, 2011

Cui, Y., & Yang, Y. (2011). New Nanostructured Li2S/Silicon Rechargeable Battery with High Specific Energy. SciVee. https://doi.org/10.4016/27363.01

Nano-structured textiles as high-performance aqueous cathodes for microbial fuel cells

Energy & Environmental Science / Jan 01, 2011

Xie, X., Pasta, M., Hu, L., Yang, Y., McDonough, J., Cha, J., Criddle, C. S., & Cui, Y. (2011). Nano-structured textiles as high-performance aqueous cathodes for microbial fuel cells. Energy & Environmental Science, 4(4), 1293. https://doi.org/10.1039/c0ee00793e

Electrospun Metal Nanofiber Webs as High-Performance Transparent Electrode

Nano Letters / Aug 25, 2010

Wu, H., Hu, L., Rowell, M. W., Kong, D., Cha, J. J., McDonough, J. R., Zhu, J., Yang, Y., McGehee, M. D., & Cui, Y. (2010). Electrospun Metal Nanofiber Webs as High-Performance Transparent Electrode. Nano Letters, 10(10), 4242–4248. https://doi.org/10.1021/nl102725k

Mn3O4−Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Batteries

Journal of the American Chemical Society / Sep 20, 2010

Wang, H., Cui, L.-F., Yang, Y., Sanchez Casalongue, H., Robinson, J. T., Liang, Y., Cui, Y., & Dai, H. (2010). Mn3O4−Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Batteries. Journal of the American Chemical Society, 132(40), 13978–13980. https://doi.org/10.1021/ja105296a

Thin, Flexible Secondary Li-Ion Paper Batteries

ACS Nano / Sep 13, 2010

Hu, L., Wu, H., La Mantia, F., Yang, Y., & Cui, Y. (2010). Thin, Flexible Secondary Li-Ion Paper Batteries. ACS Nano, 4(10), 5843–5848. https://doi.org/10.1021/nn1018158

New Nanostructured Li2S/Silicon Rechargeable Battery with High Specific Energy

Nano Letters / Feb 25, 2010

Yang, Y., McDowell, M. T., Jackson, A., Cha, J. J., Hong, S. S., & Cui, Y. (2010). New Nanostructured Li2S/Silicon Rechargeable Battery with High Specific Energy. Nano Letters, 10(4), 1486–1491. https://doi.org/10.1021/nl100504q

Carbon−Silicon Core−Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries

Nano Letters / Aug 05, 2009

Cui, L.-F., Yang, Y., Hsu, C.-M., & Cui, Y. (2009). Carbon−Silicon Core−Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries. Nano Letters, 9(9), 3370–3374. https://doi.org/10.1021/nl901670t

Carbon nanofiber supercapacitors with large areal capacitances

Applied Physics Letters / Dec 14, 2009

McDonough, J. R., Choi, J. W., Yang, Y., La Mantia, F., Zhang, Y., & Cui, Y. (2009). Carbon nanofiber supercapacitors with large areal capacitances. Applied Physics Letters, 95(24), 243109. https://doi.org/10.1063/1.3273864

Highly conductive paper for energy-storage devices

Proceedings of the National Academy of Sciences / Dec 22, 2009

Hu, L., Choi, J. W., Yang, Y., Jeong, S., La Mantia, F., Cui, L.-F., & Cui, Y. (2009). Highly conductive paper for energy-storage devices. Proceedings of the National Academy of Sciences, 106(51), 21490–21494. https://doi.org/10.1073/pnas.0908858106

Phase transformations in one-dimensional materials: applications in electronics and energy sciences

Journal of Materials Chemistry / Jan 01, 2009

Schoen, D. T., Meister, S., Peng, H., Chan, C., Yang, Y., & Cui, Y. (2009). Phase transformations in one-dimensional materials: applications in electronics and energy sciences. Journal of Materials Chemistry, 19(33), 5879. https://doi.org/10.1039/b820624d

Single Nanorod Devices for Battery Diagnostics: A Case Study on LiMn2O4

Nano Letters / Oct 06, 2009

Yang, Y., Xie, C., Ruffo, R., Peng, H., Kim, D. K., & Cui, Y. (2009). Single Nanorod Devices for Battery Diagnostics: A Case Study on LiMn2O4. Nano Letters, 9(12), 4109–4114. https://doi.org/10.1021/nl902315u

Spinel LiMn2O4 Nanorods as Lithium Ion Battery Cathodes

Nano Letters / Oct 01, 2008

Kim, D. K., Muralidharan, P., Lee, H.-W., Ruffo, R., Yang, Y., Chan, C. K., Peng, H., Huggins, R. A., & Cui, Y. (2008). Spinel LiMn2O4 Nanorods as Lithium Ion Battery Cathodes. Nano Letters, 8(11), 3948–3952. https://doi.org/10.1021/nl8024328

[0001] Oriented Aluminum Nitride One-Dimensional Nanostructures: Synthesis, Structure Evolution, and Electrical Properties

ACS Nano / Jan 05, 2008

Zheng, J., Yang, Y., Yu, B., Song, X., & Li, X. (2008). [0001] Oriented Aluminum Nitride One-Dimensional Nanostructures: Synthesis, Structure Evolution, and Electrical Properties. ACS Nano, 2(1), 134–142. https://doi.org/10.1021/nn700363t

Nanowire batteries for next generation electronics

2008 IEEE International Electron Devices Meeting / Dec 01, 2008

Chan, C. K., Connor, S. T., Yang, Y., Hsu, C.-M., Huggins, R. A., & Cui, Y. (2008). Nanowire batteries for next generation electronics. 2008 IEEE International Electron Devices Meeting. https://doi.org/10.1109/iedm.2008.4796644

Mn-doped AlN nanowires with room temperature ferromagnetic ordering

Applied Physics Letters / Feb 26, 2007

Yang, Y., Zhao, Q., Zhang, X. Z., Liu, Z. G., Zou, C. X., Shen, B., & Yu, D. P. (2007). Mn-doped AlN nanowires with room temperature ferromagnetic ordering. Applied Physics Letters, 90(9), 092118. https://doi.org/10.1063/1.2475276

Education

Stanford University

PhD, Materials Science and Engineering / June, 2012

Stanford, California, United States of America

Peking University

B.S., Physics / July, 2007

Beijing

Experience

Columbia University

Assistant Professor / July, 2012Present

Massachusetts Institute of Technology

Postdoc / July, 2012June, 2015

Links & Social Media

Join Yuan on NotedSource!
Join Now

At NotedSource, we believe that professors, post-docs, scientists and other researchers have deep, untapped knowledge and expertise that can be leveraged to drive innovation within companies. NotedSource is committed to bridging the gap between academia and industry by providing a platform for collaboration with industry and networking with other researchers.

For industry, NotedSource identifies the right academic experts in 24 hours to help organizations build and grow. With a platform of thousands of knowledgeable PhDs, scientists, and industry experts, NotedSource makes connecting and collaborating easy.

For academic researchers such as professors, post-docs, and Ph.D.s, NotedSource provides tools to discover and connect to your colleagues with messaging and news feeds, in addition to the opportunity to be paid for your collaboration with vetted partners.

Expert Institutions
NotedSource has experts from Stanford University
Expert institutions using NotedSource include Oxfort University
Experts from McGill have used NotedSource to share their expertise
University of Chicago experts have used NotedSource
MIT researchers have used NotedSource
Proudly trusted by
Microsoft uses NotedSource for academic partnerships
Johnson & Johnson academic research projects on NotedSource
ProQuest (Clarivate) uses NotedSource as their industry academia platform
Slamom consulting engages academics for research collaboration on NotedSource
Omnicom and OMG find academics on notedsource
Unilever research project have used NotedSource to engage academic experts