Giuseppe Maria de Peppo
Research Director
Research Expertise
About
Publications
Slow release of growth factors and thrombospondin-1 in Choukroun's platelet-rich fibrin (PRF): a gold standard to achieve for all surgical platelet concentrates technologies
Growth Factors / Jan 01, 2009
Dohan Ehrenfest, D. M., de Peppo, G. M., Doglioli, P., & Sammartino, G. (2009). Slow release of growth factors and thrombospondin-1 in Choukroun’s platelet-rich fibrin (PRF): a gold standard to achieve for all surgical platelet concentrates technologies. Growth Factors, 27(1), 63–69. https://doi.org/10.1080/08977190802636713
Choukroun's platelet-rich fibrin (PRF) stimulates in vitro proliferation and differentiation of human oral bone mesenchymal stem cell in a dose-dependent way
Archives of Oral Biology / Mar 01, 2010
Dohan Ehrenfest, D. M., Doglioli, P., de Peppo, G. M., Del Corso, M., & Charrier, J.-B. (2010). Choukroun’s platelet-rich fibrin (PRF) stimulates in vitro proliferation and differentiation of human oral bone mesenchymal stem cell in a dose-dependent way. Archives of Oral Biology, 55(3), 185–194. https://doi.org/10.1016/j.archoralbio.2010.01.004
Engineering bone tissue substitutes from human induced pluripotent stem cells
Proceedings of the National Academy of Sciences / May 07, 2013
de Peppo, G. M., Marcos-Campos, I., Kahler, D. J., Alsalman, D., Shang, L., Vunjak-Novakovic, G., & Marolt, D. (2013). Engineering bone tissue substitutes from human induced pluripotent stem cells. Proceedings of the National Academy of Sciences, 110(21), 8680–8685. https://doi.org/10.1073/pnas.1301190110
Human Embryonic Mesodermal Progenitors Highly Resemble Human Mesenchymal Stem Cells and Display High Potential for Tissue Engineering Applications
Tissue Engineering Part A / Jul 01, 2010
de Peppo, G. M., Svensson, S., Lennerås, M., Synnergren, J., Stenberg, J., Strehl, R., Hyllner, J., Thomsen, P., & Karlsson, C. (2010). Human Embryonic Mesodermal Progenitors Highly Resemble Human Mesenchymal Stem Cells and Display High Potential for Tissue Engineering Applications. Tissue Engineering Part A, 16(7), 2161–2182. https://doi.org/10.1089/ten.tea.2009.0629
Bioreactor Systems for Human Bone Tissue Engineering
Processes / Jun 11, 2014
Sladkova, M., & de Peppo, G. (2014). Bioreactor Systems for Human Bone Tissue Engineering. Processes, 2(2), 494–525. https://doi.org/10.3390/pr2020494
Free-Form-Fabricated Commercially Pure Ti and Ti6Al4V Porous Scaffolds Support the Growth of Human Embryonic Stem Cell-Derived Mesodermal Progenitors
The Scientific World Journal / Jan 01, 2012
de Peppo, G. M., Palmquist, A., Borchardt, P., Lennerås, M., Hyllner, J., Snis, A., Lausmaa, J., Thomsen, P., & Karlsson, C. (2012). Free-Form-Fabricated Commercially Pure Ti and Ti6Al4V Porous Scaffolds Support the Growth of Human Embryonic Stem Cell-Derived Mesodermal Progenitors. The Scientific World Journal, 2012, 1–14. https://doi.org/10.1100/2012/646417
Osteogenic Potential of Human Mesenchymal Stem Cells and Human Embryonic Stem Cell-Derived Mesodermal Progenitors: A Tissue Engineering Perspective
Tissue Engineering Part A / Nov 01, 2010
de Peppo, G. M., Sjovall, P., Lennerås, M., Strehl, R., Hyllner, J., Thomsen, P., & Karlsson, C. (2010). Osteogenic Potential of Human Mesenchymal Stem Cells and Human Embryonic Stem Cell-Derived Mesodermal Progenitors: A Tissue Engineering Perspective. Tissue Engineering Part A, 16(11), 3413–3426. https://doi.org/10.1089/ten.tea.2010.0052
Osteogenic response of human mesenchymal stem cells to well-defined nanoscale topography in vitro
International Journal of Nanomedicine / May 01, 2014
de Peppo, G. M., Agheli, H., Karlsson, C., Ekstrom, K., Brisby, H., Lenneras, M., Gustafsson, S., Sjövall, P., Johansson, A., Olsson, E., Lausmaa, J., Thomsen, P., & Petronis, S. (2014). Osteogenic response of human mesenchymal stem cells to well-defined nanoscale topography in vitro. International Journal of Nanomedicine, 2499. https://doi.org/10.2147/ijn.s58805
Human Embryonic Stem Cell-Derived Mesodermal Progenitors Display Substantially Increased Tissue Formation Compared to Human Mesenchymal Stem Cells Under Dynamic Culture Conditions in a Packed Bed/Column Bioreactor
Tissue Engineering Part A / Jan 01, 2013
de Peppo, G. M., Sladkova, M., Sjövall, P., Palmquist, A., Oudina, K., Hyllner, J., Thomsen, P., Petite, H., & Karlsson, C. (2013). Human Embryonic Stem Cell-Derived Mesodermal Progenitors Display Substantially Increased Tissue Formation Compared to Human Mesenchymal Stem Cells Under Dynamic Culture Conditions in a Packed Bed/Column Bioreactor. Tissue Engineering Part A, 19(1–2), 175–187. https://doi.org/10.1089/ten.tea.2011.0412
GMP-compatible and xeno-free cultivation of mesenchymal progenitors derived from human-induced pluripotent stem cells
Stem Cell Research & Therapy / Jan 11, 2019
McGrath, M., Tam, E., Sladkova, M., AlManaie, A., Zimmer, M., & de Peppo, G. M. (2019). GMP-compatible and xeno-free cultivation of mesenchymal progenitors derived from human-induced pluripotent stem cells. Stem Cell Research & Therapy, 10(1). https://doi.org/10.1186/s13287-018-1119-3
Comparison of Decellularized Cow and Human Bone for Engineering Bone Grafts with Human Induced Pluripotent Stem Cells
Tissue Engineering Part A / Feb 01, 2019
Sladkova, M., Cheng, J., Palmer, M., Chen, S., Lin, C., Xia, W., Yu, Y. E., Zhou, B., Engqvist, H., & de Peppo, G. M. (2019). Comparison of Decellularized Cow and Human Bone for Engineering Bone Grafts with Human Induced Pluripotent Stem Cells. Tissue Engineering Part A, 25(3–4), 288–301. https://doi.org/10.1089/ten.tea.2018.0149
State of the Art in Stem Cell Research: Human Embryonic Stem Cells, Induced Pluripotent Stem Cells, and Transdifferentiation
Journal of Blood Transfusion / Jul 05, 2012
de Peppo, G. M., & Marolt, D. (2012). State of the Art in Stem Cell Research: Human Embryonic Stem Cells, Induced Pluripotent Stem Cells, and Transdifferentiation. Journal of Blood Transfusion, 2012, 1–10. https://doi.org/10.1155/2012/317632
Modulating the biochemical and biophysical culture environment to enhance osteogenic differentiation and maturation of human pluripotent stem cell-derived mesenchymal progenitors
Stem Cell Research & Therapy / Sep 04, 2013
de Peppo, G. M., & Marolt, D. (2013). Modulating the biochemical and biophysical culture environment to enhance osteogenic differentiation and maturation of human pluripotent stem cell-derived mesenchymal progenitors. Stem Cell Research & Therapy, 4(5). https://doi.org/10.1186/scrt317
Superior Osteogenic Capacity of Human Embryonic Stem Cells Adapted to Matrix-Free Growth Compared to Human Mesenchymal Stem Cells
Tissue Engineering Part A / Nov 01, 2010
Bigdeli, N., de Peppo, G. M., Lennerås, M., Sjövall, P., Lindahl, A., Hyllner, J., & Karlsson, C. (2010). Superior Osteogenic Capacity of Human Embryonic Stem Cells Adapted to Matrix-Free Growth Compared to Human Mesenchymal Stem Cells. Tissue Engineering Part A, 16(11), 3427–3440. https://doi.org/10.1089/ten.tea.2010.0112
Thermal scanning probe lithography
Nature Reviews Methods Primers / May 05, 2022
Albisetti, E., Calò, A., Zanut, A., Zheng, X., de Peppo, G. M., & Riedo, E. (2022). Thermal scanning probe lithography. Nature Reviews Methods Primers, 2(1). https://doi.org/10.1038/s43586-022-00110-0
Cultivation of Human Bone-Like Tissue from Pluripotent Stem Cell-Derived Osteogenic Progenitors in Perfusion Bioreactors
Methods in Molecular Biology / Jan 01, 2013
de Peppo, G. M., Vunjak-Novakovic, G., & Marolt, D. (2013). Cultivation of Human Bone-Like Tissue from Pluripotent Stem Cell-Derived Osteogenic Progenitors in Perfusion Bioreactors. In Biomimetics and Stem Cells (pp. 173–184). Springer New York. https://doi.org/10.1007/7651_2013_52
Engineering human bone grafts with new macroporous calcium phosphate cement scaffolds
Journal of Tissue Engineering and Regenerative Medicine / Sep 25, 2017
Sladkova, M., Palmer, M., Öhman, C., Cheng, J., Al‐Ansari, S., Saad, M., Engqvist, H., & Peppo, G. M. (2017). Engineering human bone grafts with new macroporous calcium phosphate cement scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 12(3), 715–726. Portico. https://doi.org/10.1002/term.2491
Fabrication of macroporous cement scaffolds using PEG particles: In vitro evaluation with induced pluripotent stem cell-derived mesenchymal progenitors
Materials Science and Engineering: C / Dec 01, 2016
Sladkova, M., Palmer, M., Öhman, C., Alhaddad, R. J., Esmael, A., Engqvist, H., & de Peppo, G. M. (2016). Fabrication of macroporous cement scaffolds using PEG particles: In vitro evaluation with induced pluripotent stem cell-derived mesenchymal progenitors. Materials Science and Engineering: C, 69, 640–652. https://doi.org/10.1016/j.msec.2016.06.075
Make no bones about it: cells could soon be reprogrammed to grow replacement bones?
Expert Opinion on Biological Therapy / Sep 23, 2013
de Peppo, G. M., & Marolt, D. (2013). Make no bones about it: cells could soon be reprogrammed to grow replacement bones? Expert Opinion on Biological Therapy, 14(1), 1–5. https://doi.org/10.1517/14712598.2013.840581
Hypothermic and cryogenic preservation of tissue‐engineered human bone
Annals of the New York Academy of Sciences / Oct 31, 2019
Tam, E., McGrath, M., Sladkova, M., AlManaie, A., Alostaad, A., & de Peppo, G. M. (2019). Hypothermic and cryogenic preservation of tissue‐engineered human bone. Annals of the New York Academy of Sciences, 1460(1), 77–87. Portico. https://doi.org/10.1111/nyas.14264
Cost and Time Effective Lithography of Reusable Millimeter Size Bone Tissue Replicas With Sub‐15 nm Feature Size on A Biocompatible Polymer
Advanced Functional Materials / Feb 05, 2021
Liu, X., Zanut, A., Sladkova‐Faure, M., Xie, L., Weck, M., Zheng, X., Riedo, E., & de Peppo, G. M. (2021). Cost and Time Effective Lithography of Reusable Millimeter Size Bone Tissue Replicas With Sub‐15 nm Feature Size on A Biocompatible Polymer. Advanced Functional Materials, 31(19). Portico. https://doi.org/10.1002/adfm.202008662
Stem cell-mediated functionalization of titanium implants
Journal of Materials Science: Materials in Medicine / Jul 25, 2017
Ingrassia, D., Sladkova, M., Palmer, M., Xia, W., Engqvist, H., & de Peppo, G. M. (2017). Stem cell-mediated functionalization of titanium implants. Journal of Materials Science: Materials in Medicine, 28(9). https://doi.org/10.1007/s10856-017-5944-1
Segmental Additive Tissue Engineering
Scientific Reports / Jul 18, 2018
Sladkova, M., Alawadhi, R., Jaragh Alhaddad, R., Esmael, A., Alansari, S., Saad, M., Mulla Yousef, J., Alqaoud, L., & de Peppo, G. M. (2018). Segmental Additive Tissue Engineering. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-29270-4
Human induced mesenchymal stem cells display increased sensitivity to matrix stiffness
Scientific Reports / May 19, 2022
Gultian, K. A., Gandhi, R., Sarin, K., Sladkova-Faure, M., Zimmer, M., de Peppo, G. M., & Vega, S. L. (2022). Human induced mesenchymal stem cells display increased sensitivity to matrix stiffness. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-12143-2
Human Progenitor Cells for Bone Engineering Applications
Current Molecular Medicine / May 01, 2013
Peppo, G. M. de, Thomsen, P., Karlsson, C., Strehl, R., Lindahl, A., & Hyllner, J. (2013). Human Progenitor Cells for Bone Engineering Applications. Current Molecular Medicine, 13(5), 723–734. https://doi.org/10.2174/1566524011313050004
A biomimetic engineered bone platform for advanced testing of prosthetic implants
Scientific Reports / Dec 17, 2020
Sladkova-Faure, M., Pujari-Palmer, M., Öhman-Mägi, C., López, A., Wang, H., Engqvist, H., & de Peppo, G. M. (2020). A biomimetic engineered bone platform for advanced testing of prosthetic implants. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-78416-w
Human Embryonic Stem Cell-Derived Mesodermal Progenitors for Bone Engineering
Stem Cells and Cancer Stem Cells, Volume 7 / Jan 01, 2012
de Peppo, G. M., & Karlsson, C. (2012). Human Embryonic Stem Cell-Derived Mesodermal Progenitors for Bone Engineering. In Stem Cells and Cancer Stem Cells (pp. 157–169). Springer Netherlands. https://doi.org/10.1007/978-94-007-4285-7_14
GMP-Compatible, Xeno-Free Culture of Human Induced Mesenchymal Stem Cells
Methods in Molecular Biology / Jan 01, 2020
de Peppo, G. M. (2020). GMP-Compatible, Xeno-Free Culture of Human Induced Mesenchymal Stem Cells. In Stem Cells and Good Manufacturing Practices (pp. 121–129). Springer US. https://doi.org/10.1007/7651_2020_285
Biomaterials for Cranio-Maxillofacial Bone Engineering
Tissue Engineering in Oral and Maxillofacial Surgery / Jan 01, 2019
de Peppo, G. M., Omar, O., & Thomsen, P. (2019). Biomaterials for Cranio-Maxillofacial Bone Engineering. In Tissue Engineering in Oral and Maxillofacial Surgery (pp. 7–25). Springer International Publishing. https://doi.org/10.1007/978-3-030-24517-7_2
A Polymer Canvas with the Stiffness of the Bone Matrix to Study and Control Mesenchymal Stem Cell Response
Advanced Healthcare Materials / Jan 13, 2023
Zanut, A., Li, R., Deng, R., Liu, X., Rejhon, M., Chen, W., Weck, M., de Peppo, G. M., & Riedo, E. (2023). A Polymer Canvas with the Stiffness of the Bone Matrix to Study and Control Mesenchymal Stem Cell Response. Advanced Healthcare Materials, 12(10). Portico. https://doi.org/10.1002/adhm.202201503
Tissue Engineering: Cost and Time Effective Lithography of Reusable Millimeter Size Bone Tissue Replicas With Sub‐15 nm Feature Size on A Biocompatible Polymer (Adv. Funct. Mater. 19/2021)
Advanced Functional Materials / May 01, 2021
Liu, X., Zanut, A., Sladkova‐Faure, M., Xie, L., Weck, M., Zheng, X., Riedo, E., & de Peppo, G. M. (2021). Tissue Engineering: Cost and Time Effective Lithography of Reusable Millimeter Size Bone Tissue Replicas With Sub‐15 nm Feature Size on A Biocompatible Polymer (Adv. Funct. Mater. 19/2021). Advanced Functional Materials, 31(19). Portico. https://doi.org/10.1002/adfm.202170129
Xeno-free cultivation of human induced pluripotent stem cells for clinical applications
Methods in iPSC Technology / Jan 01, 2021
Saleh, F., Mondeh-Lowor, R., & de Peppo, G. M. (2021). Xeno-free cultivation of human induced pluripotent stem cells for clinical applications. In Methods in iPSC Technology (pp. 309–341). Elsevier. https://doi.org/10.1016/b978-0-323-85766-6.00001-2
The Sixth Annual Translational Stem Cell Research Conference of the New York Stem Cell Foundation
Annals of the New York Academy of Sciences / Mar 28, 2012
Marshall, C., Hua, H., Shang, L., Ding, B., Zito, G., de Peppo, G. M., Wang, G. K., Douvaras, P., Sproul, A. A., Paull, D., Fossati, V., Nestor, M. W., McKeon, D., Smith, K. A., & Solomon, S. L. (2012). The Sixth Annual Translational Stem Cell Research Conference of the New York Stem Cell Foundation. Annals of the New York Academy of Sciences, 1255(1), 16–29. Portico. https://doi.org/10.1111/j.1749-6632.2012.06481.x
Education
Ph.D, Stem Cells and Tissue Engineering / May, 2011
Politecnico di Milano
Master of Science, Material Science / February, 2006
Università degli Studi di Roma "La Sapienza"
Bachelor of Science, Biotechnology / September, 2003
Join Peppo on NotedSource!
Join Now
At NotedSource, we believe that professors, post-docs, scientists and other researchers have deep, untapped knowledge and expertise that can be leveraged to drive innovation within companies. NotedSource is committed to bridging the gap between academia and industry by providing a platform for collaboration with industry and networking with other researchers.
For industry, NotedSource identifies the right academic experts in 24 hours to help organizations build and grow. With a platform of thousands of knowledgeable PhDs, scientists, and industry experts, NotedSource makes connecting and collaborating easy.
For academic researchers such as professors, post-docs, and Ph.D.s, NotedSource provides tools to discover and connect to your colleagues with messaging and news feeds, in addition to the opportunity to be paid for your collaboration with vetted partners.