Mohand Saed
University of Cambridge, Cavendish Laboratory
Research Expertise
About
Publications
Tailorable and programmable liquid-crystalline elastomers using a two-stage thiol–acrylate reaction
RSC Advances / Jan 01, 2015
Yakacki, C. M., Saed, M., Nair, D. P., Gong, T., Reed, S. M., & Bowman, C. N. (2015). Tailorable and programmable liquid-crystalline elastomers using a two-stage thiol–acrylate reaction. RSC Advances, 5(25), 18997–19001. https://doi.org/10.1039/c5ra01039j
Molecularly‐Engineered, 4D‐Printed Liquid Crystal Elastomer Actuators
Advanced Functional Materials / Nov 27, 2018
Saed, M. O., Ambulo, C. P., Kim, H., De, R., Raval, V., Searles, K., Siddiqui, D. A., Cue, J. M. O., Stefan, M. C., Shankar, M. R., & Ware, T. H. (2018). Molecularly‐Engineered, 4D‐Printed Liquid Crystal Elastomer Actuators. Advanced Functional Materials, 29(3), 1806412. Portico. https://doi.org/10.1002/adfm.201806412
Thiol-acrylate main-chain liquid-crystalline elastomers with tunable thermomechanical properties and actuation strain
Journal of Polymer Science Part B: Polymer Physics / Oct 14, 2016
Saed, M. O., Torbati, A. H., Starr, C. A., Visvanathan, R., Clark, N. A., & Yakacki, C. M. (2016). Thiol-acrylate main-chain liquid-crystalline elastomers with tunable thermomechanical properties and actuation strain. Journal of Polymer Science Part B: Polymer Physics, 55(2), 157–168. Portico. https://doi.org/10.1002/polb.24249
High strain actuation liquid crystal elastomers via modulation of mesophase structure
Soft Matter / Jan 01, 2017
Saed, M. O., Volpe, R. H., Traugutt, N. A., Visvanathan, R., Clark, N. A., & Yakacki, C. M. (2017). High strain actuation liquid crystal elastomers via modulation of mesophase structure. Soft Matter, 13(41), 7537–7547. https://doi.org/10.1039/c7sm01380a
Liquid Crystalline Vitrimers with Full or Partial Boronic‐Ester Bond Exchange
Advanced Functional Materials / Oct 15, 2019
Saed, M. O., Gablier, A., & Terentejv, E. M. (2019). Liquid Crystalline Vitrimers with Full or Partial Boronic‐Ester Bond Exchange. Advanced Functional Materials, 30(3), 1906458. Portico. https://doi.org/10.1002/adfm.201906458
Synthesis of Programmable Main-chain Liquid-crystalline Elastomers Using a Two-stage Thiol-acrylate Reaction
Journal of Visualized Experiments / Jan 19, 2016
Saed, M. O., Torbati, A. H., Nair, D. P., & Yakacki, C. M. (2016). Synthesis of Programmable Main-chain Liquid-crystalline Elastomers Using a Two-stage Thiol-acrylate Reaction. Journal of Visualized Experiments, 107. https://doi.org/10.3791/53546
Liquid-crystal order during synthesis affects main-chain liquid-crystal elastomer behavior
Soft Matter / Jan 01, 2017
Traugutt, N. A., Volpe, R. H., Bollinger, M. S., Saed, M. O., Torbati, A. H., Yu, K., Dadivanyan, N., & Yakacki, C. M. (2017). Liquid-crystal order during synthesis affects main-chain liquid-crystal elastomer behavior. Soft Matter, 13(39), 7013–7025. https://doi.org/10.1039/c7sm01405h
Exchangeable Liquid Crystalline Elastomers and Their Applications
Chemical Reviews / Feb 17, 2021
Saed, M. O., Gablier, A., & Terentjev, E. M. (2021). Exchangeable Liquid Crystalline Elastomers and Their Applications. Chemical Reviews, 122(5), 4927–4945. https://doi.org/10.1021/acs.chemrev.0c01057
Elasticity and Relaxation in Full and Partial Vitrimer Networks
Macromolecules / Sep 26, 2019
Meng, F., Saed, M. O., & Terentjev, E. M. (2019). Elasticity and Relaxation in Full and Partial Vitrimer Networks. Macromolecules, 52(19), 7423–7429. https://doi.org/10.1021/acs.macromol.9b01123
Siloxane crosslinks with dynamic bond exchange enable shape programming in liquid-crystalline elastomers
Scientific Reports / Apr 20, 2020
Saed, M. O., & Terentjev, E. M. (2020). Siloxane crosslinks with dynamic bond exchange enable shape programming in liquid-crystalline elastomers. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-63508-4
Viscoelasticity of the polydomain-monodomain transition in main-chain liquid crystal elastomers
Polymer / Aug 01, 2016
Azoug, A., Vasconcellos, V., Dooling, J., Saed, M., Yakacki, C. M., & Nguyen, T. D. (2016). Viscoelasticity of the polydomain-monodomain transition in main-chain liquid crystal elastomers. Polymer, 98, 165–171. https://doi.org/10.1016/j.polymer.2016.06.022
Enhanced Dynamic Adhesion in Nematic Liquid Crystal Elastomers
Advanced Materials / Jun 11, 2019
Ohzono, T., Saed, M. O., & Terentjev, E. M. (2019). Enhanced Dynamic Adhesion in Nematic Liquid Crystal Elastomers. Advanced Materials, 1902642. Portico. https://doi.org/10.1002/adma.201902642
Liquid Crystal Elastomer-Based Microelectrode Array for In Vitro Neuronal Recordings
Micromachines / Aug 20, 2018
Rihani, R., Kim, H., Black, B., Atmaramani, R., Saed, M., Pancrazio, J., & Ware, T. (2018). Liquid Crystal Elastomer-Based Microelectrode Array for In Vitro Neuronal Recordings. Micromachines, 9(8), 416. https://doi.org/10.3390/mi9080416
Photo-CuAAC Induced Wrinkle Formation in a Thiol–Acrylate Elastomer via Sequential Click Reactions
Chemistry of Materials / Sep 10, 2014
Alzahrani, A. A., Nair, D. P., Smits, D. J., Saed, M., Yakacki, C. M., & Bowman, C. N. (2014). Photo-CuAAC Induced Wrinkle Formation in a Thiol–Acrylate Elastomer via Sequential Click Reactions. Chemistry of Materials, 26(18), 5303–5309. https://doi.org/10.1021/cm502237b
Scalable upcycling of thermoplastic polyolefins into vitrimers through transesterification
Journal of Materials Chemistry A / Jan 01, 2020
Kar, G. P., Saed, M. O., & Terentjev, E. M. (2020). Scalable upcycling of thermoplastic polyolefins into vitrimers through transesterification. Journal of Materials Chemistry A, 8(45), 24137–24147. https://doi.org/10.1039/d0ta07339c
Responsive, 3D Electronics Enabled by Liquid Crystal Elastomer Substrates
ACS Applied Materials & Interfaces / May 09, 2019
Kim, H., Gibson, J., Maeng, J., Saed, M. O., Pimentel, K., Rihani, R. T., Pancrazio, J. J., Georgakopoulos, S. V., & Ware, T. H. (2019). Responsive, 3D Electronics Enabled by Liquid Crystal Elastomer Substrates. ACS Applied Materials & Interfaces, 11(21), 19506–19513. https://doi.org/10.1021/acsami.9b04189
Rheology of vitrimers
Nature Communications / Sep 30, 2022
Meng, F., Saed, M. O., & Terentjev, E. M. (2022). Rheology of vitrimers. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-33321-w
Four-dimensional Printing of Liquid Crystal Elastomers
ACS Applied Materials & Interfaces / Oct 11, 2017
Ambulo, C. P., Burroughs, J. J., Boothby, J. M., Kim, H., Shankar, M. R., & Ware, T. H. (2017). Four-dimensional Printing of Liquid Crystal Elastomers. ACS Applied Materials & Interfaces, 9(42), 37332–37339. https://doi.org/10.1021/acsami.7b11851
Programmable Shape Change in Semicrystalline Liquid Crystal Elastomers
ACS Applied Materials & Interfaces / Jul 22, 2022
Javed, M., Corazao, T., Saed, M. O., Ambulo, C. P., Li, Y., Kessler, M. R., & Ware, T. H. (2022). Programmable Shape Change in Semicrystalline Liquid Crystal Elastomers. ACS Applied Materials & Interfaces, 14(30), 35087–35096. https://doi.org/10.1021/acsami.2c07533
Thiol–acrylate side-chain liquid crystal elastomers
Soft Matter / Jan 01, 2022
Guo, H., Saed, M. O., & Terentjev, E. M. (2022). Thiol–acrylate side-chain liquid crystal elastomers. Soft Matter, 18(25), 4803–4809. https://doi.org/10.1039/d2sm00547f
Main‐Chain Nematic Side‐Chain Smectic Composite Liquid Crystalline Elastomers
Advanced Functional Materials / Jan 26, 2023
Guo, H., Saed, M. O., & Terentjev, E. M. (2023). Main‐Chain Nematic Side‐Chain Smectic Composite Liquid Crystalline Elastomers. Advanced Functional Materials, 2214918. Portico. https://doi.org/10.1002/adfm.202214918
Synthesis of Programmable Main-chain Liquid-crystalline Elastomers Using a Two-stage Thiol-acrylate Reaction
Journal of Visualized Experiments / Jan 19, 2016
Saed, M. O., Torbati, A. H., Nair, D. P., & Yakacki, C. M. (2016). Synthesis of Programmable Main-chain Liquid-crystalline Elastomers Using a Two-stage Thiol-acrylate Reaction. Journal of Visualized Experiments, 107. https://doi.org/10.3791/53546-v
Liquid crystal elastomer shell actuators with negative order parameter
Science Advances / Apr 05, 2019
Jampani, V. S. R., Volpe, R. H., Reguengo de Sousa, K., Ferreira Machado, J., Yakacki, C. M., & Lagerwall, J. P. F. (2019). Liquid crystal elastomer shell actuators with negative order parameter. Science Advances, 5(4). https://doi.org/10.1126/sciadv.aaw2476
Dynamic Pressure Sensitive Adhesion in Nematic Phase of Liquid Crystal Elastomers
Advanced Functional Materials / Dec 02, 2021
Farre‐Kaga, H. J., Saed, M. O., & Terentjev, E. M. (2021). Dynamic Pressure Sensitive Adhesion in Nematic Phase of Liquid Crystal Elastomers. Advanced Functional Materials, 32(12), 2110190. Portico. https://doi.org/10.1002/adfm.202110190
Impact damping and vibration attenuation in nematic liquid crystal elastomers
Nature Communications / Nov 18, 2021
Saed, M. O., Elmadih, W., Terentjev, A., Chronopoulos, D., Williamson, D., & Terentjev, E. M. (2021). Impact damping and vibration attenuation in nematic liquid crystal elastomers. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-27012-1
Dynamic Semicrystalline Networks of Polypropylene with Thiol-Anhydride Exchangeable Crosslinks
ACS Applied Materials & Interfaces / Aug 26, 2021
Saed, M. O., Lin, X., & Terentjev, E. M. (2021). Dynamic Semicrystalline Networks of Polypropylene with Thiol-Anhydride Exchangeable Crosslinks. ACS Applied Materials & Interfaces, 13(35), 42044–42051. https://doi.org/10.1021/acsami.1c12099
Heliotracking Device using Liquid Crystalline Elastomer Actuators
Advanced Materials Technologies / Jul 18, 2021
Guo, H., Saed, M. O., & Terentjev, E. M. (2021). Heliotracking Device using Liquid Crystalline Elastomer Actuators. Advanced Materials Technologies, 6(11), 2100681. Portico. https://doi.org/10.1002/admt.202100681
Internal constraints and arrested relaxation in main-chain nematic elastomers
Nature Communications / Feb 04, 2021
Ohzono, T., Katoh, K., Minamikawa, H., Saed, M. O., & Terentjev, E. M. (2021). Internal constraints and arrested relaxation in main-chain nematic elastomers. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-21036-3
A Copolymer-in-Oil Tissue-Mimicking Material With Tuneable Acoustic and Optical Characteristics for Photoacoustic Imaging Phantoms
IEEE Transactions on Medical Imaging / Dec 01, 2021
Hacker, L., Joseph, J., Ivory, A. M., Saed, M. O., Zeqiri, B., Rajagopal, S., & Bohndiek, S. E. (2021). A Copolymer-in-Oil Tissue-Mimicking Material With Tuneable Acoustic and Optical Characteristics for Photoacoustic Imaging Phantoms. IEEE Transactions on Medical Imaging, 40(12), 3593–3603. https://doi.org/10.1109/tmi.2021.3090857
Continuous spinning aligned liquid crystal elastomer fibers with a 3D printer setup
Soft Matter / Jan 01, 2021
Lin, X., Saed, M. O., & Terentjev, E. M. (2021). Continuous spinning aligned liquid crystal elastomer fibers with a 3D printer setup. Soft Matter, 17(21), 5436–5443. https://doi.org/10.1039/d1sm00432h
Transesterification in Epoxy–Thiol Exchangeable Liquid Crystalline Elastomers
Macromolecules / Sep 29, 2020
Gablier, A., Saed, M. O., & Terentjev, E. M. (2020). Transesterification in Epoxy–Thiol Exchangeable Liquid Crystalline Elastomers. Macromolecules, 53(19), 8642–8649. https://doi.org/10.1021/acs.macromol.0c01757
Light-Driven Dynamic Adhesion on Photosensitized Nematic Liquid Crystalline Elastomers
ACS Applied Materials & Interfaces / Jun 17, 2020
Ohzono, T., Norikane, Y., Saed, M. O., & Terentjev, E. M. (2020). Light-Driven Dynamic Adhesion on Photosensitized Nematic Liquid Crystalline Elastomers. ACS Applied Materials & Interfaces, 12(28), 31992–31997. https://doi.org/10.1021/acsami.0c08289
Catalytic Control of Plastic Flow in Siloxane-Based Liquid Crystalline Elastomer Networks
ACS Macro Letters / May 06, 2020
Saed, M. O., & Terentjev, E. M. (2020). Catalytic Control of Plastic Flow in Siloxane-Based Liquid Crystalline Elastomer Networks. ACS Macro Letters, 9(5), 749–755. https://doi.org/10.1021/acsmacrolett.0c00265
Dynamic Manipulation of Friction in Smart Textile Composites of Liquid‐Crystal Elastomers
Advanced Materials Interfaces / Apr 01, 2020
Ohzono, T., Saed, M. O., Yue, Y., Norikane, Y., & Terentjev, E. M. (2020). Dynamic Manipulation of Friction in Smart Textile Composites of Liquid‐Crystal Elastomers. Advanced Materials Interfaces, 7(7), 1901996. Portico. https://doi.org/10.1002/admi.201901996
Rates of transesterification in epoxy–thiol vitrimers
Soft Matter / Jan 01, 2020
Gablier, A., Saed, M. O., & Terentjev, E. M. (2020). Rates of transesterification in epoxy–thiol vitrimers. Soft Matter, 16(22), 5195–5202. https://doi.org/10.1039/d0sm00742k
The effect of alignment on the rate-dependent behavior of a main-chain liquid crystal elastomer
Soft Matter / Jan 01, 2020
Martin Linares, C. P., Traugutt, N. A., Saed, M. O., Martin Linares, A., Yakacki, C. M., & Nguyen, T. D. (2020). The effect of alignment on the rate-dependent behavior of a main-chain liquid crystal elastomer. Soft Matter, 16(38), 8782–8798. https://doi.org/10.1039/d0sm00125b
Fully recoverable rigid shape memory foam based on copper-catalyzed azide–alkyne cycloaddition (CuAAC) using a salt leaching technique
Polymer Chemistry / Jan 01, 2018
Alzahrani, A. A., Saed, M., Yakacki, C. M., Song, H. B., Sowan, N., Walston, J. J., Shah, P. K., McBride, M. K., Stansbury, J. W., & Bowman, C. N. (2018). Fully recoverable rigid shape memory foam based on copper-catalyzed azide–alkyne cycloaddition (CuAAC) using a salt leaching technique. Polymer Chemistry, 9(1), 121–130. https://doi.org/10.1039/c7py01121k
High-strength poly(para-phenylene) as an orthopedic biomaterial
Journal of Biomedical Materials Research Part A / Oct 16, 2013
Frick, C. P., DiRienzo, A. L., Hoyt, A. J., Safranski, D. L., Saed, M., Losty, E. J., & Yakacki, C. M. (2013). High-strength poly(para-phenylene) as an orthopedic biomaterial. Journal of Biomedical Materials Research Part A, 102(9), 3122–3129. https://doi.org/10.1002/jbm.a.34982
Education
University of Colorado Denver
PhD, Mechanical engineering
University of Colorado Denver
MS, Mechanical engineering / December, 2013
Experience
University of Cambridge
Senior research associate / October, 2018 — September, 2022
University of Texas at Dallas
Postdoctoral associate / June, 2017 — September, 2018
University of Cambridge
Research assistant professor / September, 2022 — Present
Join Mohand on NotedSource!
Join Now
At NotedSource, we believe that professors, post-docs, scientists and other researchers have deep, untapped knowledge and expertise that can be leveraged to drive innovation within companies. NotedSource is committed to bridging the gap between academia and industry by providing a platform for collaboration with industry and networking with other researchers.
For industry, NotedSource identifies the right academic experts in 24 hours to help organizations build and grow. With a platform of thousands of knowledgeable PhDs, scientists, and industry experts, NotedSource makes connecting and collaborating easy.
For academic researchers such as professors, post-docs, and Ph.D.s, NotedSource provides tools to discover and connect to your colleagues with messaging and news feeds, in addition to the opportunity to be paid for your collaboration with vetted partners.