Cyril Eleftheriou
Principal Scientist, Expert in Neuroscience and Bioengineering
Research Expertise
About
Publications
Restoration of Vision with Ectopic Expression of Human Rod Opsin
Current Biology / Aug 01, 2015
Cehajic-Kapetanovic, J., Eleftheriou, C., Allen, A. E., Milosavljevic, N., Pienaar, A., Bedford, R., Davis, K. E., Bishop, P. N., & Lucas, R. J. (2015). Restoration of Vision with Ectopic Expression of Human Rod Opsin. Current Biology, 25(16), 2111–2122. https://doi.org/10.1016/j.cub.2015.07.029
Subretinally injected semiconducting polymer nanoparticles rescue vision in a rat model of retinal dystrophy
Nature Nanotechnology / Jun 29, 2020
Maya-Vetencourt, J. F., Manfredi, G., Mete, M., Colombo, E., Bramini, M., Di Marco, S., Shmal, D., Mantero, G., Dipalo, M., Rocchi, A., DiFrancesco, M. L., Papaleo, E. D., Russo, A., Barsotti, J., Eleftheriou, C., Di Maria, F., Cossu, V., Piazza, F., Emionite, L., … Benfenati, F. (2020). Subretinally injected semiconducting polymer nanoparticles rescue vision in a rat model of retinal dystrophy. Nature Nanotechnology, 15(8), 698–708. https://doi.org/10.1038/s41565-020-0696-3
Semiconductor Nanorod–Carbon Nanotube Biomimetic Films for Wire-Free Photostimulation of Blind Retinas
Nano Letters / Oct 31, 2014
Bareket, L., Waiskopf, N., Rand, D., Lubin, G., David-Pur, M., Ben-Dov, J., Roy, S., Eleftheriou, C., Sernagor, E., Cheshnovsky, O., Banin, U., & Hanein, Y. (2014). Semiconductor Nanorod–Carbon Nanotube Biomimetic Films for Wire-Free Photostimulation of Blind Retinas. Nano Letters, 14(11), 6685–6692. https://doi.org/10.1021/nl5034304
An Induced Pluripotent Stem Cell Model of Hypoplastic Left Heart Syndrome (HLHS) Reveals Multiple Expression and Functional Differences in HLHS-Derived Cardiac Myocytes
Stem Cells Translational Medicine / Mar 03, 2014
Jiang, Y., Habibollah, S., Tilgner, K., Collin, J., Barta, T., Al-Aama, J. Y., Tesarov, L., Hussain, R., Trafford, A. W., Kirkwood, G., Sernagor, E., Eleftheriou, C. G., Przyborski, S., Stojković, M., Lako, M., Keavney, B., & Armstrong, L. (2014). An Induced Pluripotent Stem Cell Model of Hypoplastic Left Heart Syndrome (HLHS) Reveals Multiple Expression and Functional Differences in HLHS-Derived Cardiac Myocytes. Stem Cells Translational Medicine, 3(4), 416–423. https://doi.org/10.5966/sctm.2013-0105
Neuronal firing modulation by a membrane-targeted photoswitch
Nature Nanotechnology / Feb 03, 2020
DiFrancesco, M. L., Lodola, F., Colombo, E., Maragliano, L., Bramini, M., Paternò, G. M., Baldelli, P., Serra, M. D., Lunelli, L., Marchioretto, M., Grasselli, G., Cimò, S., Colella, L., Fazzi, D., Ortica, F., Vurro, V., Eleftheriou, C. G., Shmal, D., Maya-Vetencourt, J. F., … Benfenati, F. (2020). Neuronal firing modulation by a membrane-targeted photoswitch. Nature Nanotechnology, 15(4), 296–306. https://doi.org/10.1038/s41565-019-0632-6
Photoreceptive retinal ganglion cells control the information rate of the optic nerve
Proceedings of the National Academy of Sciences / Nov 28, 2018
Milosavljevic, N., Storchi, R., Eleftheriou, C. G., Colins, A., Petersen, R. S., & Lucas, R. J. (2018). Photoreceptive retinal ganglion cells control the information rate of the optic nerve. Proceedings of the National Academy of Sciences, 115(50). https://doi.org/10.1073/pnas.1810701115
Retina-specific targeting of pericytes reveals structural diversity and enables control of capillary blood flow
May 31, 2020
Ivanova, E., Corona, C., Eleftheriou, C. G., Bianchimano, P., & Sagdullaev, B. T. (2020). Retina-specific targeting of pericytes reveals structural diversity and enables control of capillary blood flow. https://doi.org/10.1101/2020.05.29.124586
Of neurons and pericytes: The neuro-vascular approach to diabetic retinopathy
Visual Neuroscience / Jan 01, 2020
Eleftheriou, C. G., Ivanova, E., & Sagdullaev, B. T. (2020). Of neurons and pericytes: The neuro-vascular approach to diabetic retinopathy. Visual Neuroscience, 37. https://doi.org/10.1017/s0952523820000048
Melanopsin Driven Light Responses Across a Large Fraction of Retinal Ganglion Cells in a Dystrophic Retina
Frontiers in Neuroscience / Apr 03, 2020
Eleftheriou, C. G., Wright, P., Allen, A. E., Elijah, D., Martial, F. P., & Lucas, R. J. (2020). Melanopsin Driven Light Responses Across a Large Fraction of Retinal Ganglion Cells in a Dystrophic Retina. Frontiers in Neuroscience, 14. https://doi.org/10.3389/fnins.2020.00320
AAV-BR1 targets endothelial cells in the retina to reveal their morphological diversity and to deliver Cx43
May 25, 2021
Ivanova, E., Corona, C., Eleftheriou, C. G., Stout, R. F., Körbelin, J., & Sagdullaev, B. T. (2021). AAV-BR1 targets endothelial cells in the retina to reveal their morphological diversity and to deliver Cx43. https://doi.org/10.1101/2021.05.25.445660
Carbon nanotube electrodes for retinal implants: a study of structural and functional integration over time
Apr 27, 2016
Eleftheriou, C. G., Zimmermann, J. B., Kjeldsen, H. D., David-Pur, M., Hanein, Y., & Sernagor, E. (2016). Carbon nanotube electrodes for retinal implants: a study of structural and functional integration over time. https://doi.org/10.1101/050633
Optogenetic Stimulation of Cholinergic Amacrine Cells Improves Capillary Blood Flow in Diabetic Retinopathy
Investigative Opthalmology & Visual Science / Aug 25, 2020
Ivanova, E., Bianchimano, P., Corona, C., Eleftheriou, C. G., & Sagdullaev, B. T. (2020). Optogenetic Stimulation of Cholinergic Amacrine Cells Improves Capillary Blood Flow in Diabetic Retinopathy. Investigative Opthalmology & Visual Science, 61(10), 44. https://doi.org/10.1167/iovs.61.10.44
Restoration of vision with ectopic expression of human rod opsin
The Lancet / Feb 01, 2017
Kapetanovic, J. C., Eleftheriou, C., Allen, A., Milosavljevic, N., Pienaar, A., Bedford, R., Davis, K., Bishop, P., & Lucas, R. (2017). Restoration of vision with ectopic expression of human rod opsin. The Lancet, 389, S30. https://doi.org/10.1016/s0140-6736(17)30426-9
Retinoschisin deficiency induces persistent aberrant waves of activity affecting neuroglial signaling in the retina
Aug 28, 2021
Eleftheriou, C. G., Corona, C., Khattak, S., Ivanova, E., Bianchimano, P., Liu, Y., Sun, D., Singh, R., Batoki, J. C., McAnany, J. J., Peachey, N. S., Romano, C., & Sagdullaev, B. T. (2021). Retinoschisin deficiency induces persistent aberrant waves of activity affecting neuroglial signaling in the retina. https://doi.org/10.1101/2021.08.26.457777
A Membrane-Targeted Photoswitch Potently Modulates Neuronal Firing
Jul 22, 2019
DiFrancesco, M. L., Lodola, F., Colombo, E., Maragliano, L., Paternò, G. M., Bramini, M., Cimò, S., Colella, L., Fazzi, D., Eleftheriou, C. G., Maya-Vetencourt, J. F., Bertarelli, C., Lanzani, G., & Benfenati, F. (2019). A Membrane-Targeted Photoswitch Potently Modulates Neuronal Firing. https://doi.org/10.1101/711077
A fully organic retinal prosthesis restores vision in a rat model of degenerative blindness
Nature Materials / Mar 06, 2017
Maya-Vetencourt, J. F., Ghezzi, D., Antognazza, M. R., Colombo, E., Mete, M., Feyen, P., Desii, A., Buschiazzo, A., Di Paolo, M., Di Marco, S., Ticconi, F., Emionite, L., Shmal, D., Marini, C., Donelli, I., Freddi, G., Maccarone, R., Bisti, S., Sambuceti, G., … Benfenati, F. (2017). A fully organic retinal prosthesis restores vision in a rat model of degenerative blindness. Nature Materials, 16(6), 681–689. https://doi.org/10.1038/nmat4874
Mechanisms for Discomfort Glare in Central Vision
Investigative Ophthalmology & Visual Science / Dec 18, 2014
Bargary, G., Jia, Y., & Barbur, J. L. (2014). Mechanisms for Discomfort Glare in Central Vision. Investigative Ophthalmology & Visual Science, 56(1), 464–471. https://doi.org/10.1167/iovs.14-15707
Structure, Function, and Pathology of Bruch's Membrane
Retina / Jan 01, 2013
Curcio, C. A., & Johnson, M. (2013). Structure, Function, and Pathology of Bruch’s Membrane. In Retina (pp. 465–481). Elsevier. https://doi.org/10.1016/b978-1-4557-0737-9.00020-5
Carbon nanotube electrodes for retinal implants: A study of structural and functional integration over time
Biomaterials / Jan 01, 2017
Eleftheriou, C. G., Zimmermann, J. B., Kjeldsen, H. D., David-Pur, M., Hanein, Y., & Sernagor, E. (2017). Carbon nanotube electrodes for retinal implants: A study of structural and functional integration over time. Biomaterials, 112, 108–121. https://doi.org/10.1016/j.biomaterials.2016.10.018
Optogenetic Modulation of Intracellular Signalling and Transcription: Focus on Neuronal Plasticity
Journal of Experimental Neuroscience / Jan 01, 2017
Eleftheriou, C., Cesca, F., Maragliano, L., Benfenati, F., & Maya-Vetencourt, J. F. (2017). Optogenetic Modulation of Intracellular Signalling and Transcription: Focus on Neuronal Plasticity. Journal of Experimental Neuroscience, 11, 117906951770335. https://doi.org/10.1177/1179069517703354
Melanopsin-Derived Visual Responses under Light Adapted Conditions in the Mouse dLGN
PLOS ONE / Mar 30, 2015
Davis, K. E., Eleftheriou, C. G., Allen, A. E., Procyk, C. A., & Lucas, R. J. (2015). Melanopsin-Derived Visual Responses under Light Adapted Conditions in the Mouse dLGN. PLOS ONE, 10(3), e0123424. https://doi.org/10.1371/journal.pone.0123424
Melanopsin-driven increases in maintained activity enhance thalamic visual response reliability across a simulated dawn
Proceedings of the National Academy of Sciences / Oct 05, 2015
Storchi, R., Milosavljevic, N., Eleftheriou, C. G., Martial, F. P., Orlowska-Feuer, P., Bedford, R. A., Brown, T. M., Montemurro, M. A., Petersen, R. S., & Lucas, R. J. (2015). Melanopsin-driven increases in maintained activity enhance thalamic visual response reliability across a simulated dawn. Proceedings of the National Academy of Sciences, 112(42). https://doi.org/10.1073/pnas.1505274112
Spatial receptive fields in the retina and dorsal lateral geniculate nucleus of mice lacking rods and cones
Journal of Neurophysiology / Aug 01, 2015
Procyk, C. A., Eleftheriou, C. G., Storchi, R., Allen, A. E., Milosavljevic, N., Brown, T. M., & Lucas, R. J. (2015). Spatial receptive fields in the retina and dorsal lateral geniculate nucleus of mice lacking rods and cones. Journal of Neurophysiology, 114(2), 1321–1330. https://doi.org/10.1152/jn.00368.2015
Education
Newcastle University
PhD, Neuroscience / July, 2013
University of Manchester
Masters, Neuroscience and AI / June, 2007
Experience
Novartis
Principal Scientist / November, 2022 — Present
Gene therapy, Optical Coherence Tomography, Machine Learning, Programming, Microelectrode array, Retina, Translational Medicine, Confocal Microscopy
Burke Neurological Instiute
Director of Imaging Core / May, 2019 — November, 2022
Confocal Microscopy, histology, Immunohistochemistry, retinal function, hemodynamics, neuroplasticity, neuroscience
Italian Institute of Technology
Postdoctoral Scholar / November, 2016 — October, 2018
Neurosurgery, Optogenetics, Gene therapy, Super Resolution Microscopy, Visual Neuroscience, Neuroplasticity, Matlab, Programming, Machine Learning
University of Manchester
Postdoctoral Researcher / September, 2013 — June, 2016
Neuroscience, Retinal plasticity, visual function, confocal microscopy, micro-electrode array, programming, automation
Newcastle University
Postdoctoral Researcher / April, 2012 — September, 2013
Neuroscience, retinal plasticity, neurotech, neural implants, nanotechnology, electron microscopy, confocal microscopy, bioengineering, programming, automation
Links & Social Media
Join Cyril on NotedSource!
Join Now
At NotedSource, we believe that professors, post-docs, scientists and other researchers have deep, untapped knowledge and expertise that can be leveraged to drive innovation within companies. NotedSource is committed to bridging the gap between academia and industry by providing a platform for collaboration with industry and networking with other researchers.
For industry, NotedSource identifies the right academic experts in 24 hours to help organizations build and grow. With a platform of thousands of knowledgeable PhDs, scientists, and industry experts, NotedSource makes connecting and collaborating easy.
For academic researchers such as professors, post-docs, and Ph.D.s, NotedSource provides tools to discover and connect to your colleagues with messaging and news feeds, in addition to the opportunity to be paid for your collaboration with vetted partners.