Xiaolei Wang
R&D Scientist in biomedical imaging and surgical microscope development
Research Expertise
About
Publications
Optical Clearing Delivers Ultrasensitive Hyperspectral Dark-Field Imaging for Single-Cell Evaluation
ACS Nano / Feb 24, 2016
Cui, Y., Wang, X., Ren, W., Liu, J., & Irudayaraj, J. (2016). Optical Clearing Delivers Ultrasensitive Hyperspectral Dark-Field Imaging for Single-Cell Evaluation. ACS Nano, 10(3), 3132–3143. https://doi.org/10.1021/acsnano.6b00142
Single-Cell Quantification of Cytosine Modifications by Hyperspectral Dark-Field Imaging
ACS Nano / Nov 02, 2015
Wang, X., Cui, Y., & Irudayaraj, J. (2015). Single-Cell Quantification of Cytosine Modifications by Hyperspectral Dark-Field Imaging. ACS Nano, 9(12), 11924–11932. https://doi.org/10.1021/acsnano.5b04451
Optical bistability effect in plasmonic racetrack resonator with high extinction ratio
Optics Express / Sep 22, 2011
Wang, X., Jiang, H., Chen, J., Wang, P., Lu, Y., & Ming, H. (2011). Optical bistability effect in plasmonic racetrack resonator with high extinction ratio. Optics Express, 19(20), 19415. https://doi.org/10.1364/oe.19.019415
Optical bistability enhanced by highly localized bulk plasmon polariton modes in subwavelength metal-nonlinear dielectric multilayer structure
Applied Physics Letters / Feb 23, 2009
Chen, J., Wang, P., Wang, X., Lu, Y., Zheng, R., Ming, H., & Zhan, Q. (2009). Optical bistability enhanced by highly localized bulk plasmon polariton modes in subwavelength metal-nonlinear dielectric multilayer structure. Applied Physics Letters, 94(8). https://doi.org/10.1063/1.3079408
Oxygen Nanobubble Tracking by Light Scattering in Single Cells and Tissues
ACS Nano / Mar 13, 2017
Bhandari, P., Wang, X., & Irudayaraj, J. (2017). Oxygen Nanobubble Tracking by Light Scattering in Single Cells and Tissues. ACS Nano, 11(3), 2682–2688. https://doi.org/10.1021/acsnano.6b07478
Second-Stokes YVO_4/Nd:YVO_4/YVO_4self-frequency Raman laser
Optics Letters / May 29, 2012
Chen, W., Wei, Y., Huang, C., Wang, X., Shen, H., Zhai, S., Xu, S., Li, B., Chen, Z., & Zhang, G. (2012). Second-Stokes YVO_4/Nd:YVO_4/YVO_4self-frequency Raman laser. Optics Letters, 37(11), 1968. https://doi.org/10.1364/ol.37.001968
Superplastic Formation of Metal Nanostructure Arrays with Ultrafine Gaps
Advanced Materials / Aug 29, 2016
Hu, Y., Xuan, Y., Wang, X., Deng, B., Saei, M., Jin, S., Irudayaraj, J., & Cheng, G. J. (2016). Superplastic Formation of Metal Nanostructure Arrays with Ultrafine Gaps. Advanced Materials, 28(41), 9152–9162. Portico. https://doi.org/10.1002/adma.201602497
Plasmonic racetrack resonator with high extinction ratio under critical coupling condition
Journal of Applied Physics / Jun 15, 2010
Wang, X., Wang, P., Chen, C., Chen, J., Lu, Y., Ming, H., & Zhan, Q. (2010). Plasmonic racetrack resonator with high extinction ratio under critical coupling condition. Journal of Applied Physics, 107(12). https://doi.org/10.1063/1.3437639
Theoretical and experimental studies of surface plasmons excited at metal-uniaxial dielectric interface
Applied Physics Letters / Jan 10, 2011
Wang, X., Wang, P., Chen, J., Lu, Y., Ming, H., & Zhan, Q. (2011). Theoretical and experimental studies of surface plasmons excited at metal-uniaxial dielectric interface. Applied Physics Letters, 98(2). https://doi.org/10.1063/1.3541653
Snapshot multifocal light field microscopy
Optics Express / Apr 08, 2020
He, K., Wang, X., Wang, Z. W., Yi, H., Scherer, N. F., Katsaggelos, A. K., & Cossairt, O. (2020). Snapshot multifocal light field microscopy. Optics Express, 28(8), 12108. https://doi.org/10.1364/oe.390719
Computational multifocal microscopy
Biomedical Optics Express / Nov 28, 2018
He, K., Wang, Z., Huang, X., Wang, X., Yoo, S., Ruiz, P., Gdor, I., Selewa, A., Ferrier, N. J., Scherer, N., Hereld, M., Katsaggelos, A. K., & Cossairt, O. (2018). Computational multifocal microscopy. Biomedical Optics Express, 9(12), 6477. https://doi.org/10.1364/boe.9.006477
A plasmonic nano-antenna with controllable resonance frequency: Cu1.94S–ZnS dimeric nanoheterostructure synthesized in solution
Journal of Materials Chemistry / Jan 01, 2012
Huang, F., Wang, X., Xu, J., Chen, D., & Wang, Y. (2012). A plasmonic nano-antenna with controllable resonance frequency: Cu1.94S–ZnS dimeric nanoheterostructure synthesized in solution. Journal of Materials Chemistry, 22(42), 22614. https://doi.org/10.1039/c2jm34239a
Nanoscale Resolution 3D Snapshot Particle Tracking by Multifocal Microscopy
Nano Letters / Sep 06, 2019
Wang, X., Yi, H., Gdor, I., Hereld, M., & Scherer, N. F. (2019). Nanoscale Resolution 3D Snapshot Particle Tracking by Multifocal Microscopy. Nano Letters, 19(10), 6781–6787. https://doi.org/10.1021/acs.nanolett.9b01734
A compact efficient deep ultraviolet laser at 266 nm
Laser Physics Letters / Feb 08, 2013
Zhai, S. Y., Wang, X. L., Wei, Y., Chen, W. D., Zhuang, F. J., Xu, S., Li, B. X., Fu, J. J., Chen, Z. Q., Wang, H. W., Huang, C. H., & Zhang, G. (2013). A compact efficient deep ultraviolet laser at 266 nm. Laser Physics Letters, 10(4), 045402. https://doi.org/10.1088/1612-2011/10/4/045402
Kinase phosphorylation monitoring with i-motif DNA cross-linked SERS probes
Chemical Communications / Jan 01, 2016
Ren, W., Damayanti, N. P., Wang, X., & Irudayaraj, J. M. K. (2016). Kinase phosphorylation monitoring with i-motif DNA cross-linked SERS probes. Chemical Communications, 52(2), 410–413. https://doi.org/10.1039/c5cc06566f
Sensitivity enhanced all-optical switching using prism-grating coupled surface plasmon modes
Optics Communications / Jan 01, 2010
Chen, J., Wang, P., Wang, X., Hu, J., Chen, C., Lu, Y., Ming, H., & Zhan, Q. (2010). Sensitivity enhanced all-optical switching using prism-grating coupled surface plasmon modes. Optics Communications, 283(1), 151–154. https://doi.org/10.1016/j.optcom.2009.09.060
6.2 W diode-end-pumped 1313 nm Nd:YLF laser
Laser Physics / May 11, 2012
Wei, Y., Xu, S., Huang, C. H., Zhuang, F. J., Chen, W. D., Huang, L. X., Wang, X. L., & Zhang, G. (2012). 6.2 W diode-end-pumped 1313 nm Nd:YLF laser. Laser Physics, 22(6), 1029–1032. https://doi.org/10.1134/s1054660x12060163
金属-非线性介质-金属结构对表面等离子体的动态调控
Chinese Optics Letters / Jan 01, 2010
Wang, X., Wang, P., Chen, C., Chen, J., Lu, Y., Ming, H., & Zhan, Q. (2010). 金属-非线性介质-金属结构对表面等离子体的动态调控. Chinese Optics Letters, 8(6), 584. https://doi.org/10.3788/col20100806.0584
Design and simulation of a snapshot multi-focal interferometric microscope
Optics Express / Oct 05, 2018
He, K., Huang, X., Wang, X., Yoo, S., Ruiz, P., Gdor, I., Ferrier, N. J., Scherer, N., Hereld, M., Katsaggelos, A. K., & Cossairt, O. (2018). Design and simulation of a snapshot multi-focal interferometric microscope. Optics Express, 26(21), 27381. https://doi.org/10.1364/oe.26.027381
Plasmon mode characteristics of metallic nanowire in uniaxial anisotropic dielectric
Optics Letters / Jul 03, 2014
Chen, J., & Wang, X. (2014). Plasmon mode characteristics of metallic nanowire in uniaxial anisotropic dielectric. Optics Letters, 39(14), 4088. https://doi.org/10.1364/ol.39.004088
Investigation on performance of all optical buffer with large dynamical delay time based on cascaded double loop optical buffers
Chinese Physics B / Sep 01, 2010
Yong-Jun, W., Chong-Qing, W., Xiang-Jun, X., Kuang-Lu, Y., & Xiao-Lei, Z. (2010). Investigation on performance of all optical buffer with large dynamical delay time based on cascaded double loop optical buffers. Chinese Physics B, 19(9), 094210. https://doi.org/10.1088/1674-1056/19/9/094210
Modulation of Splitting Beam Angle with Metal–Nonlinear Optical Material–Metal (M-NL-M) Array Structure
Chinese Physics Letters / Dec 01, 2008
Xiao-Lei, W., Pei, W., Chang-Jun, M., Jun-Xue, C., Yong-Hua, L., & Hai, M. (2008). Modulation of Splitting Beam Angle with Metal–Nonlinear Optical Material–Metal (M-NL-M) Array Structure. Chinese Physics Letters, 25(12), 4375–4377. https://doi.org/10.1088/0256-307x/25/12/053
DeepProjection: specific and robust projection of curved 2D tissue sheets from 3D microscopy using deep learning
Development / Nov 01, 2022
Haertter, D., Wang, X., Fogerson, S. M., Ramkumar, N., Crawford, J. M., Poss, K. D., Di Talia, S., Kiehart, D. P., & Schmidt, C. F. (2022). DeepProjection: specific and robust projection of curved 2D tissue sheets from 3D microscopy using deep learning. Development, 149(21). https://doi.org/10.1242/dev.200621
Particle tracking by repetitive phase-shift interferometric super resolution microscopy
Optics Letters / Jun 07, 2018
Gdor, I., Wang, X., Daddysman, M., Yifat, Y., Wilton, R., Hereld, M., Noirot-Gros, M.-F., & Scherer, N. F. (2018). Particle tracking by repetitive phase-shift interferometric super resolution microscopy. Optics Letters, 43(12), 2819. https://doi.org/10.1364/ol.43.002819
Snapshot 3D tracking of insulin granules in live cells
Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XXV / Feb 23, 2018
Haunold, T., Gdor, I., Scherer, N., Wang, X., Daddysman, M., Huang, X., Selewa, A., Hereld, M., & Yi, H. (2018). Snapshot 3D tracking of insulin granules in live cells. In T. G. Brown, C. J. Cogswell, & T. Wilson (Eds.), Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XXV. SPIE. https://doi.org/10.1117/12.2285530
A continuous-wave, widely tunable, intra-cavity, singly resonant, magnesium-doped, periodically poled lithium niobate optical parametric oscillator
Laser Physics / Apr 10, 2013
Li, Z. P., Duan, Y. M., Wu, K. R., Zhang, G., Zhu, H. Y., Wang, X. L., Chen, Y. H., Xue, Z. Q., Lin, Q., Song, G. C., & Su, H. (2013). A continuous-wave, widely tunable, intra-cavity, singly resonant, magnesium-doped, periodically poled lithium niobate optical parametric oscillator. Laser Physics, 23(5), 055006. https://doi.org/10.1088/1054-660x/23/5/055006
Random Population Model for Self Pulsation in Single-Section Quantum-Dot Lasers
IEEE Photonics Technology Letters / Feb 01, 2013
Wang, Y., Mao, Y., Chen, Y., Wang, X., & Su, H. (2013). Random Population Model for Self Pulsation in Single-Section Quantum-Dot Lasers. IEEE Photonics Technology Letters, 25(4), 389–392. https://doi.org/10.1109/lpt.2013.2238918
DeepProjection: Rapid and structure-specific projections of tissue sheets embedded in 3D microscopy stacks using deep learning
Nov 19, 2021
Haertter, D., Wang, X., Fogerson, S. M., Ramkumar, N., Crawford, J. M., Poss, K. D., Di Talia, S., Kiehart, D. P., & Schmidt, C. F. (2021). DeepProjection: Rapid and structure-specific projections of tissue sheets embedded in 3D microscopy stacks using deep learning. https://doi.org/10.1101/2021.11.17.468809
Bayesian Approach for Automatic Joint Parameter Estimation in 3D Image Reconstruction from Multi-Focus Microscope
2018 25th IEEE International Conference on Image Processing (ICIP) / Oct 01, 2018
Yoo, S., Ruiz, P., Huang, X., He, K., Wang, X., Gdor, I., Selewa, A., Daddysman, M., Ferrier, N. J., Hereld, M., Scherer, N., Cossairt, O., & Katsaggelos, A. K. (2018, October). Bayesian Approach for Automatic Joint Parameter Estimation in 3D Image Reconstruction from Multi-Focus Microscope. 2018 25th IEEE International Conference on Image Processing (ICIP). https://doi.org/10.1109/icip.2018.8451309
Analytical Investigation of Transmission Properties of Metallic Gratings
Chinese Physics Letters / Dec 01, 2008
Jun-Xue, C., Pei, W., Xiao-Lei, W., Yong-Hua, L., Rong-Sheng, Z., & Hai, M. (2008). Analytical Investigation of Transmission Properties of Metallic Gratings. Chinese Physics Letters, 25(12), 4385–4387. https://doi.org/10.1088/0256-307x/25/12/056
Integrated Dynamic 3D Imaging of Microbial Processes and Communities in Rhizosphere Environments: The Argonne Small Worlds Project
Microscopy and Microanalysis / Jul 01, 2017
Kemner, K. M., Hereld, M., Scherer, N., Selewa, A., Wang, X., Gdor, I., Daddysman, M., Jureller, J., Huynh, T., Cossairt, O., Katsaggelos, A., He, K., Yoo, S., Matsuda, N., Glick, B., Riviere, P. L., Austin, J., Day, K., Chandler, T., … Noirot, M. F. (2017). Integrated Dynamic 3D Imaging of Microbial Processes and Communities in Rhizosphere Environments: The Argonne Small Worlds Project. Microscopy and Microanalysis, 23(S1), 340–341. https://doi.org/10.1017/s1431927617002380
Efficient end-pumped multi-wavelength laser operation of disordered Nd:LiGd(WO4)2crystal
Laser Physics / Aug 19, 2013
Xu, S., Huang, X., Li, B., Wei, Y., Wang, X., Huang, C., Zhuang, F., Chen, W., Zhai, S., & Zhang, G. (2013). Efficient end-pumped multi-wavelength laser operation of disordered Nd:LiGd(WO4)2crystal. Laser Physics, 23(9), 095807. https://doi.org/10.1088/1054-660x/23/9/095807
Observation of antiphase dynamics and harmonic resonance in a modulated dual-wavelength laser
Chinese Optics Letters / Jan 01, 2016
Huibin Chen, H. C., Ge Zhang, G. Z., Wenbin Liao, W. L., Bingxuan Li, B. L., Xiaolei Wang, X. W., & and Zhenqiang Chen, and Z. C. (2016). Observation of antiphase dynamics and harmonic resonance in a modulated dual-wavelength laser. Chinese Optics Letters, 14(1), 011403–011407. https://doi.org/10.3788/col201614.011403
Education
University of Science and Technology of China
Ph.D., Optics / June, 2011
Anhui Normal University
Bachelor, Physics / July, 2006
Experience
Duke University
Research Scientist/Manager / June, 2019 — May, 2022
University of Chicago
Research Professional / April, 2016 — May, 2019
True Digital Surgery
Principal R&D Scientist / July, 2022 — January, 2024
Links & Social Media
Join Xiaolei on NotedSource!
Join Now
At NotedSource, we believe that professors, post-docs, scientists and other researchers have deep, untapped knowledge and expertise that can be leveraged to drive innovation within companies. NotedSource is committed to bridging the gap between academia and industry by providing a platform for collaboration with industry and networking with other researchers.
For industry, NotedSource identifies the right academic experts in 24 hours to help organizations build and grow. With a platform of thousands of knowledgeable PhDs, scientists, and industry experts, NotedSource makes connecting and collaborating easy.
For academic researchers such as professors, post-docs, and Ph.D.s, NotedSource provides tools to discover and connect to your colleagues with messaging and news feeds, in addition to the opportunity to be paid for your collaboration with vetted partners.