Irma Kuljanishvili
Post Doctoral Research Associate at Harvard University
Research Expertise
About
Publications
Individual GaN Nanowires Exhibit Strong Piezoelectricity in 3D
Nano Letters / Jan 03, 2012
Minary-Jolandan, M., Bernal, R. A., Kuljanishvili, I., Parpoil, V., & Espinosa, H. D. (2012). Individual GaN Nanowires Exhibit Strong Piezoelectricity in 3D. Nano Letters, 12(2), 970–976. https://doi.org/10.1021/nl204043y
Review Article: Progress in fabrication of transition metal dichalcogenides heterostructure systems
Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena / May 01, 2017
Dong, R., & Kuljanishvili, I. (2017). Review Article: Progress in fabrication of transition metal dichalcogenides heterostructure systems. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 35(3). https://doi.org/10.1116/1.4982736
Scanning-probe spectroscopy of semiconductor donor molecules
Nature Physics / Feb 03, 2008
Kuljanishvili, I., Kayis, C., Harrison, J. F., Piermarocchi, C., Kaplan, T. A., Tessmer, S. H., Pfeiffer, L. N., & West, K. W. (2008). Scanning-probe spectroscopy of semiconductor donor molecules. Nature Physics, 4(3), 227–233. https://doi.org/10.1038/nphys855
Cell Attachment and Spreading on Carbon Nanotubes Is Facilitated by Integrin Binding
Frontiers in Bioengineering and Biotechnology / Sep 24, 2018
Imaninezhad, M., Schober, J., Griggs, D., Ruminski, P., Kuljanishvili, I., & Zustiak, S. P. (2018). Cell Attachment and Spreading on Carbon Nanotubes Is Facilitated by Integrin Binding. Frontiers in Bioengineering and Biotechnology, 6. https://doi.org/10.3389/fbioe.2018.00129
Controllable Patterning and CVD Growth of Isolated Carbon Nanotubes with Direct Parallel Writing of Catalyst Using Dip‐Pen Nanolithography
Small / Nov 11, 2009
Kuljanishvili, I., Dikin, D. A., Rozhok, S., Mayle, S., & Chandrasekhar, V. (2009). Controllable Patterning and CVD Growth of Isolated Carbon Nanotubes with Direct Parallel Writing of Catalyst Using Dip‐Pen Nanolithography. Small, 5(22), 2523–2527. Portico. https://doi.org/10.1002/smll.200900841
Raman spectroscopy enabled investigation of carbon nanotubes quality upon dispersion in aqueous environments
Biointerphases / Mar 01, 2017
Wang, Y., Vasileva, D., Zustiak, S. P., & Kuljanishvili, I. (2017). Raman spectroscopy enabled investigation of carbon nanotubes quality upon dispersion in aqueous environments. Biointerphases, 12(1). https://doi.org/10.1116/1.4978922
Advances in mechanical characterization of 1D and 2D nanomaterials: progress and prospects
Nano Express / Sep 01, 2020
Pantano, M. F., & Kuljanishvili, I. (2020). Advances in mechanical characterization of 1D and 2D nanomaterials: progress and prospects. Nano Express, 1(2), 022001. https://doi.org/10.1088/2632-959x/abb43e
A Two‐Step Method for Transferring Single‐Walled Carbon Nanotubes onto a Hydrogel Substrate
Macromolecular Bioscience / Oct 04, 2016
Imaninezhad, M., Kuljanishvili, I., & Zustiak, S. P. (2016). A Two‐Step Method for Transferring Single‐Walled Carbon Nanotubes onto a Hydrogel Substrate. Macromolecular Bioscience, 17(3). Portico. https://doi.org/10.1002/mabi.201600261
Modeling electric-field-sensitive scanning probe measurements for a tip of arbitrary shape
Ultramicroscopy / Dec 01, 2004
Kuljanishvili, I., Chakraborty, S., Maasilta, I. J., Tessmer, S. H., & Melloch, M. R. (2004). Modeling electric-field-sensitive scanning probe measurements for a tip of arbitrary shape. Ultramicroscopy, 102(1), 7–12. https://doi.org/10.1016/j.ultramic.2004.07.004
Controlled Fabrication of Quality ZnO NWs/CNTs and ZnO NWs/Gr Heterostructures via Direct Two-Step CVD Method
Nanomaterials / Jul 15, 2021
Schaper, N., Alameri, D., Kim, Y., Thomas, B., McCormack, K., Chan, M., Divan, R., Gosztola, D. J., Liu, Y., & Kuljanishvili, I. (2021). Controlled Fabrication of Quality ZnO NWs/CNTs and ZnO NWs/Gr Heterostructures via Direct Two-Step CVD Method. Nanomaterials, 11(7), 1836. https://doi.org/10.3390/nano11071836
Enabling Quality Interfaces with Mask‐Free Approach to Selective Growth of MoS2/Graphene Stacked Structures
Advanced Materials Interfaces / Jun 20, 2016
Dong, R., Moore, L., Ocola, L. E., & Kuljanishvili, I. (2016). Enabling Quality Interfaces with Mask‐Free Approach to Selective Growth of MoS2/Graphene Stacked Structures. Advanced Materials Interfaces, 3(16). Portico. https://doi.org/10.1002/admi.201600098
Bottom-up direct writing approach for controlled fabrication of WS2/MoS2 heterostructure systems
RSC Advances / Jan 01, 2016
Dong, R., Moore, L., Aripova, N., Williamson, C., Schurz, R., Liu, Y., Ocola, L. E., & Kuljanishvili, I. (2016). Bottom-up direct writing approach for controlled fabrication of WS2/MoS2 heterostructure systems. RSC Advances, 6(71), 66589–66594. https://doi.org/10.1039/c6ra12576j
Dielectric Loss of Boron-Based Dielectrics on Niobium Resonators
Journal of Low Temperature Physics / Mar 29, 2019
Wisbey, D. S., Vissers, M. R., Gao, J., Kline, J. S., Sandberg, M. O., Weides, M. P., Paquette, M. M., Karki, S., Brewster, J., Alameri, D., Kuljanishvili, I., Caruso, A. N., & Pappas, D. P. (2019). Dielectric Loss of Boron-Based Dielectrics on Niobium Resonators. Journal of Low Temperature Physics, 195(5–6), 474–486. https://doi.org/10.1007/s10909-019-02183-w
Effects of electronic structure of catalytic nanoparticles on carbon nanotube growth
Carbon Trends / Oct 01, 2021
Turaeva, N., & Kuljanishvili, I. (2021). Effects of electronic structure of catalytic nanoparticles on carbon nanotube growth. Carbon Trends, 5, 100092. https://doi.org/10.1016/j.cartre.2021.100092
Mask-free patterning and selective CVD-growth of 2D-TMDCs semiconductors
Semiconductor Science and Technology / Jul 23, 2019
Alameri, D., Nasr, J. R., Karbach, D., Liu, Y., Divan, R., Das, S., & Kuljanishvili, I. (2019). Mask-free patterning and selective CVD-growth of 2D-TMDCs semiconductors. Semiconductor Science and Technology, 34(8), 085010. https://doi.org/10.1088/1361-6641/ab28db
Mask-free fabrication and chemical vapor deposition synthesis of ultrathin zinc oxide microribbons on Si/SiO2 and 2D substrates
Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films / Jul 26, 2018
Alameri, D., Ocola, L. E., & Kuljanishvili, I. (2018). Mask-free fabrication and chemical vapor deposition synthesis of ultrathin zinc oxide microribbons on Si/SiO2 and 2D substrates. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 36(5). https://doi.org/10.1116/1.5036533
Direct observation of micron-scale ordered structure in a two-dimensional electron system
Physical Review B / Nov 24, 2003
Maasilta, I. J., Chakraborty, S., Kuljanishvili, I., Tessmer, S. H., & Melloch, M. R. (2003). Direct observation of micron-scale ordered structure in a two-dimensional electron system. Physical Review B, 68(20). https://doi.org/10.1103/physrevb.68.205328
Nanometer-scale capacitance spectroscopy of semiconductor donor molecules
Physica B: Condensed Matter / Oct 01, 2008
Tessmer, S. H., Kuljanishvili, I., Kayis, C., Harrison, J. F., Piermarocchi, C., & Kaplan, T. A. (2008). Nanometer-scale capacitance spectroscopy of semiconductor donor molecules. Physica B: Condensed Matter, 403(19–20), 3774–3780. https://doi.org/10.1016/j.physb.2008.07.003
Modeling single- and multiple-electron resonances for electric-field-sensitive scanning probes
Nanotechnology / Oct 02, 2008
Tessmer, S. H., & Kuljanishvili, I. (2008). Modeling single- and multiple-electron resonances for electric-field-sensitive scanning probes. Nanotechnology, 19(44), 445503. https://doi.org/10.1088/0957-4484/19/44/445503
Tunneling images of a 2D electron system in a quantizing magnetic field
Physica E: Low-dimensional Systems and Nanostructures / May 01, 2003
Maasilta, I. J., Chakraborty, S., Kuljanishvili, I., Tessmer, S. H., & Melloch, M. R. (2003). Tunneling images of a 2D electron system in a quantizing magnetic field. Physica E: Low-Dimensional Systems and Nanostructures, 18(1–3), 167–168. https://doi.org/10.1016/s1386-9477(02)01072-x
An extended model for chirality selection in single-walled carbon nanotubes
Nanoscale Advances / Jan 01, 2023
Turaeva, N., Kim, Y., & Kuljanishvili, I. (2023). An extended model for chirality selection in single-walled carbon nanotubes. Nanoscale Advances, 5(14), 3684–3690. https://doi.org/10.1039/d3na00192j
Making Contacts to Organic Transistors Using Carbon Nanotube Arrays
ECS Meeting Abstracts / Mar 01, 2011
Cicoira, F., & Martel, R. (2011). Making Contacts to Organic Transistors Using Carbon Nanotube Arrays. ECS Meeting Abstracts, MA2011-01(20), 1305–1305. https://doi.org/10.1149/ma2011-01/20/1305
Mössbauer Study of the Ge Two-Electron Donor Centers in PbSe
Semiconductors / Jan 01, 2005
Terukov, E. I. (2005). Mössbauer Study of the Ge Two-Electron Donor Centers in PbSe. Semiconductors, 39(12), 1369. https://doi.org/10.1134/1.2140305
Enabling a novel approach to a controlled fabrication of 1D crystalline nanowires on suspended microstructures of arbitrary geometries using two direct-writing technologies
Materials Today Nano / Dec 01, 2022
McCormack, K., Schaper, N., Kim, Y., Hensley, D. K., Kravchenko, I., Lavrik, N. V., Gosztola, D. J., Pantano, M. F., & Kuljanishvili, I. (2022). Enabling a novel approach to a controlled fabrication of 1D crystalline nanowires on suspended microstructures of arbitrary geometries using two direct-writing technologies. Materials Today Nano, 20, 100241. https://doi.org/10.1016/j.mtnano.2022.100241
Observing single quantum trajectories of a superconducting quantum bit
Nature / Oct 01, 2013
Murch, K. W., Weber, S. J., Macklin, C., & Siddiqi, I. (2013). Observing single quantum trajectories of a superconducting quantum bit. Nature, 502(7470), 211–214. https://doi.org/10.1038/nature12539
Microstructural Features of 3D-Printed Alloy
Metal Powder Report / Feb 01, 2024
Microstructural Features of 3D-Printed Alloy. (2024). Metal Powder Report, 79(1). https://doi.org/10.12968/s0026-0657(24)70004-6
Sequential Bayesian-optimized graphene synthesis by direct solar-thermal chemical vapor deposition
Scientific Reports / Feb 13, 2024
Alghfeli, A., & Fisher, T. S. (2024). Sequential Bayesian-optimized graphene synthesis by direct solar-thermal chemical vapor deposition. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-54005-z
Extremely large magnetoresistance in few-layer graphene/boron–nitride heterostructures
Nature Communications / Sep 21, 2015
Gopinadhan, K., Shin, Y. J., Jalil, R., Venkatesan, T., Geim, A. K., Neto, A. H. C., & Yang, H. (2015). Extremely large magnetoresistance in few-layer graphene/boron–nitride heterostructures. Nature Communications, 6(1). https://doi.org/10.1038/ncomms9337
Direct Synthesis of Large-Area Graphene on Insulating Substrates at Low Temperature using Microwave Plasma CVD
Direct Synthesis of Large-Area Graphene on Insulating Substrates at Low Temperature using Microwave Plasma CVD. (n.d.). American Chemical Society (ACS). https://doi.org/10.1021/acsomega.9b00988.s001
In Situ Measurements of Strain Evolution in Graphene/Boron Nitride Heterostructures Using a Non-Destructive Raman Spectroscopy Approach
Nanomaterials / Sep 03, 2022
Mezzacappa, M., Alameri, D., Thomas, B., Kim, Y., Lei, C.-H., & Kuljanishvili, I. (2022). In Situ Measurements of Strain Evolution in Graphene/Boron Nitride Heterostructures Using a Non-Destructive Raman Spectroscopy Approach. Nanomaterials, 12(17), 3060. https://doi.org/10.3390/nano12173060
Recent advances in carbon nanotube patterning technologies for device applications
Frontiers in Carbon / Oct 03, 2023
Kim, Y., & Kuljanishvili, I. (2023). Recent advances in carbon nanotube patterning technologies for device applications. Frontiers in Carbon, 2. https://doi.org/10.3389/frcrb.2023.1288912
Experimental Investigation of Nanosecond Laser Ablation of Carbon Nanotubes
Volume 2B: Advanced Manufacturing / Nov 01, 2021
Pachon, O., Ma, J., Schaper, N., Jahan, M. P., Lei, S., & Kuljanishvili, I. (2021, November 1). Experimental Investigation of Nanosecond Laser Ablation of Carbon Nanotubes. Volume 2B: Advanced Manufacturing. https://doi.org/10.1115/imece2021-73390
Nanowires: Controlled Selective CVD Growth of ZnO Nanowires Enabled by Mask‐Free Fabrication Approach using Aqueous Fe Catalytic Inks (Adv. Mater. Interfaces 24/2017)
Advanced Materials Interfaces / Dec 01, 2017
Alameri, D., Ocola, L. E., & Kuljanshvili, I. (2017). Nanowires: Controlled Selective CVD Growth of ZnO Nanowires Enabled by Mask‐Free Fabrication Approach using Aqueous Fe Catalytic Inks (Adv. Mater. Interfaces 24/2017). Advanced Materials Interfaces, 4(24). Portico. https://doi.org/10.1002/admi.201770129
Scanning-probe Single-electron Capacitance Spectroscopy
Journal of Visualized Experiments / Jul 30, 2013
Walsh, K. A., Romanowich, M. E., Gasseller, M., Kuljanishvili, I., Ashoori, R., & Tessmer, S. (2013). Scanning-probe Single-electron Capacitance Spectroscopy. Journal of Visualized Experiments, 77. https://doi.org/10.3791/50676
Localized in-Situ Study of Lithium-Ion Transport in Graphene-Based Electrodes By Scanning Probe Microscopy
ECS Meeting Abstracts / Oct 27, 2013
Wang, Y., Moon, H., & Lee, M. H. (2013). Localized in-Situ Study of Lithium-Ion Transport in Graphene-Based Electrodes By Scanning Probe Microscopy. ECS Meeting Abstracts, MA2013-02(14), 1130–1130. https://doi.org/10.1149/ma2013-02/14/1130
Enabling "Bottom up" Approach for Nano Probe Fabrication and Study of Carbon Nanotubes
ECS Meeting Abstracts / Feb 15, 2012
Kuljanishvili, I. (2012). Enabling “Bottom up” Approach for Nano Probe Fabrication and Study of Carbon Nanotubes. ECS Meeting Abstracts, MA2012-01(32), 1206–1206. https://doi.org/10.1149/ma2012-01/32/1206
Novel Nanoscale Materials for Energy Conversion Applications
Mar 10, 2011
Kuljanishvili, I., & Chandrasekhar, V. (2011). Novel Nanoscale Materials for Energy Conversion Applications. Defense Technical Information Center. https://doi.org/10.21236/ada544921
Abstracts Submitted for Presentation at the 2010 APS Annual Meeting
Phytopathology® / Jun 01, 2010
Abstracts Submitted for Presentation at the 2010 APS Annual Meeting. (2010). Phytopathology®, 100(6S), S1–S147. https://doi.org/10.1094/phyto.2010.100.6.s1
Dip‐pen nanolithography: Small 22/2009
Small / Nov 11, 2009
Kuljanishvili, I., Dikin, D. A., Rozhok, S., Mayle, S., & Chandrasekhar, V. (2009). Dip‐pen nanolithography: Small 22/2009. Small, 5(22). Portico. https://doi.org/10.1002/smll.200990106
Scanning Charge Accumulation Probe of Semiconductor Donor Molecules
AIP Conference Proceedings / Jan 01, 2008
Tessmer, S. H., Kuljanishvili, I., Piermarocchi, C., Kaplan, T. A., Harrison, J. F., Danielewicz, P., Piecuch, P., & Zelevinsky, V. (2008). Scanning Charge Accumulation Probe of Semiconductor Donor Molecules. AIP Conference Proceedings. https://doi.org/10.1063/1.2915582
APS 2005 March Meeting Show Guide
Physics Today / Feb 01, 2005
APS 2005 March Meeting Show Guide. (2005). Physics Today, 58(2), 57–61. https://doi.org/10.1063/1.3692239
Spin susceptibility of a variable-density two-dimensional electron system
Physica E: Low-dimensional Systems and Nanostructures / Apr 01, 2004
Zhu, J., Stormer, H. L., Pfeiffer, L. N., Baldwin, K. W., & West, K. W. (2004). Spin susceptibility of a variable-density two-dimensional electron system. Physica E: Low-Dimensional Systems and Nanostructures, 22(1–3), 228–231. https://doi.org/10.1016/j.physe.2003.11.255
Multispectral Detector Based on Array of Carbon-Nanotube Quantum Wells
Sep 30, 2009
Shafraniuk, S. (2009). Multispectral Detector Based on Array of Carbon-Nanotube Quantum Wells. Defense Technical Information Center. https://doi.org/10.21236/ada523322
Education
Michigan State University
PhD, Condensed matter physics, low temperature nanoscale physics, scanning probe microscopy and spectroscopy / December, 2005
Experience
Harvard University
Post Doctoral Research Associate / January, 2006 — January, 2007
Research and student mentoring
Northwestern University
Post Doctoral Research Fellow / January, 2007 — July, 2011
Research and student mentoring
Links & Social Media
Join Dr. Kuljanishvili on NotedSource!
Join Now
At NotedSource, we believe that professors, post-docs, scientists and other researchers have deep, untapped knowledge and expertise that can be leveraged to drive innovation within companies. NotedSource is committed to bridging the gap between academia and industry by providing a platform for collaboration with industry and networking with other researchers.
For industry, NotedSource identifies the right academic experts in 24 hours to help organizations build and grow. With a platform of thousands of knowledgeable PhDs, scientists, and industry experts, NotedSource makes connecting and collaborating easy.
For academic researchers such as professors, post-docs, and Ph.D.s, NotedSource provides tools to discover and connect to your colleagues with messaging and news feeds, in addition to the opportunity to be paid for your collaboration with vetted partners.