Dr. David Siderovski, Ph.D.
Professor of Computational Pharmacology; Chair of HSC SBS Dept. of Pharmacology & Neuroscience
Research Expertise
About
Publications
Molecular characterization of mitochondrial apoptosis-inducing factor
Nature / Feb 01, 1999
Susin, S. A., Lorenzo, H. K., Zamzami, N., Marzo, I., Snow, B. E., Brothers, G. M., Mangion, J., Jacotot, E., Costantini, P., Loeffler, M., Larochette, N., Goodlett, D. R., Aebersold, R., Siderovski, D. P., Penninger, J. M., & Kroemer, G. (1999). Molecular characterization of mitochondrial apoptosis-inducing factor. Nature, 397(6718), 441–446. https://doi.org/10.1038/17135
Negative Regulation of PKB/Akt-Dependent Cell Survival by the Tumor Suppressor PTEN
Cell / Oct 01, 1998
Stambolic, V., Suzuki, A., de la Pompa, J. L., Brothers, G. M., Mirtsos, C., Sasaki, T., Ruland, J., Penninger, J. M., Siderovski, D. P., & Mak, T. W. (1998). Negative Regulation of PKB/Akt-Dependent Cell Survival by the Tumor Suppressor PTEN. Cell, 95(1), 29–39. https://doi.org/10.1016/s0092-8674(00)81780-8
G-protein signaling: back to the future
Cellular and Molecular Life Sciences / Mar 01, 2005
McCudden, C. R., Hains, M. D., Kimple, R. J., Siderovski, D. P., & Willard, F. S. (2005). G-protein signaling: back to the future. Cellular and Molecular Life Sciences, 62(5), 551–577. https://doi.org/10.1007/s00018-004-4462-3
5′-Capping enzymes are targeted to pre-mRNA by binding to the phosphorylated carboxy-terminal domain of RNA polymerase II
Genes & Development / Dec 15, 1997
McCracken, S., Fong, N., Rosonina, E., Yankulov, K., Brothers, G., Siderovski, D., Hessel, A., Foster, S., Program, A. E., Shuman, S., & Bentley, D. L. (1997). 5′-Capping enzymes are targeted to pre-mRNA by binding to the phosphorylated carboxy-terminal domain of RNA polymerase II. Genes & Development, 11(24), 3306–3318. https://doi.org/10.1101/gad.11.24.3306
The GAPs, GEFs, and GDIs of heterotrimeric G-protein alpha subunits
International Journal of Biological Sciences / Jan 01, 2005
Siderovski, D. P., & Willard, F. S. (2005). The GAPs, GEFs, and GDIs of heterotrimeric G-protein alpha subunits. International Journal of Biological Sciences, 51–66. https://doi.org/10.7150/ijbs.1.51
Regulators of G-Protein signalling as new central nervous system drug targets
Nature Reviews Drug Discovery / Mar 01, 2002
Neubig, R. R., & Siderovski, D. P. (2002). Regulators of G-Protein signalling as new central nervous system drug targets. Nature Reviews Drug Discovery, 1(3), 187–197. https://doi.org/10.1038/nrd747
Regulator of G-protein signaling-2 mediates vascular smooth muscle relaxation and blood pressure
Nature Medicine / Nov 09, 2003
Tang, M., Wang, G., Lu, P., Karas, R. H., Aronovitz, M., Heximer, S. P., Kaltenbronn, K. M., Blumer, K. J., Siderovski, D. P., Zhu, Y., & Mendelsohn, M. E. (2003). Regulator of G-protein signaling-2 mediates vascular smooth muscle relaxation and blood pressure. Nature Medicine, 9(12), 1506–1512. https://doi.org/10.1038/nm958
Tiam1 mediates Ras activation of Rac by a PI(3)K-independent mechanism
Nature Cell Biology / Jul 22, 2002
Lambert, J. M., Lambert, Q. T., Reuther, G. W., Malliri, A., Siderovski, D. P., Sondek, J., Collard, J. G., & Der, C. J. (2002). Tiam1 mediates Ras activation of Rac by a PI(3)K-independent mechanism. Nature Cell Biology, 4(8), 621–625. https://doi.org/10.1038/ncb833
A Seven-Transmembrane RGS Protein That Modulates Plant Cell Proliferation
Science / Sep 19, 2003
Chen, J.-G., Willard, F. S., Huang, J., Liang, J., Chasse, S. A., Jones, A. M., & Siderovski, D. P. (2003). A Seven-Transmembrane RGS Protein That Modulates Plant Cell Proliferation. Science, 301(5640), 1728–1731. https://doi.org/10.1126/science.1087790
Translation of Polarity Cues into Asymmetric Spindle Positioning in Caenorhabditis elegans Embryos
Science / Jun 20, 2003
Colombo, K., Grill, S. W., Kimple, R. J., Willard, F. S., Siderovski, D. P., & Gönczy, P. (2003). Translation of Polarity Cues into Asymmetric Spindle Positioning in Caenorhabditis elegans Embryos. Science, 300(5627), 1957–1961. https://doi.org/10.1126/science.1084146
Dynamic Regulation of RGS2 Suggests a Novel Mechanism in G-Protein Signaling and Neuronal Plasticity
The Journal of Neuroscience / Sep 15, 1998
Ingi, T., Krumins, A. M., Chidiac, P., Brothers, G. M., Chung, S., Snow, B. E., Barnes, C. A., Lanahan, A. A., Siderovski, D. P., Ross, E. M., Gilman, A. G., & Worley, P. F. (1998). Dynamic Regulation of RGS2 Suggests a Novel Mechanism in G-Protein Signaling and Neuronal Plasticity. The Journal of Neuroscience, 18(18), 7178–7188. https://doi.org/10.1523/jneurosci.18-18-07178.1998
Regulation of T cell activation, anxiety, and male aggression by RGS2
Proceedings of the National Academy of Sciences / Oct 10, 2000
Oliveira-dos-Santos, A. J., Matsumoto, G., Snow, B. E., Bai, D., Houston, F. P., Whishaw, I. Q., Mariathasan, S., Sasaki, T., Wakeham, A., Ohashi, P. S., Roder, J. C., Barnes, C. A., Siderovski, D. P., & Penninger, J. M. (2000). Regulation of T cell activation, anxiety, and male aggression by RGS2. Proceedings of the National Academy of Sciences, 97(22), 12272–12277. https://doi.org/10.1073/pnas.220414397
A G protein γ subunit-like domain shared between RGS11 and other RGS proteins specifies binding to G β5 subunits
Proceedings of the National Academy of Sciences / Oct 27, 1998
Snow, B. E., Krumins, A. M., Brothers, G. M., Lee, S.-F., Wall, M. A., Chung, S., Mangion, J., Arya, S., Gilman, A. G., & Siderovski, D. P. (1998). A G protein γ subunit-like domain shared between RGS11 and other RGS proteins specifies binding to G β5 subunits. Proceedings of the National Academy of Sciences, 95(22), 13307–13312. https://doi.org/10.1073/pnas.95.22.13307
Structural and Evolutionary Division of Phosphotyrosine Binding (PTB) Domains
Journal of Molecular Biology / Jan 01, 2005
Uhlik, M. T., Temple, B., Bencharit, S., Kimple, A. J., Siderovski, D. P., & Johnson, G. L. (2005). Structural and Evolutionary Division of Phosphotyrosine Binding (PTB) Domains. Journal of Molecular Biology, 345(1), 1–20. https://doi.org/10.1016/j.jmb.2004.10.038
Regulators of G-Protein Signaling and Their Gα Substrates: Promises and Challenges in Their Use as Drug Discovery Targets
Pharmacological Reviews / Jul 07, 2011
Kimple, A. J., Bosch, D. E., Giguère, P. M., & Siderovski, D. P. (2011). Regulators of G-Protein Signaling and Their Gα Substrates: Promises and Challenges in Their Use as Drug Discovery Targets. Pharmacological Reviews, 63(3), 728–749. https://doi.org/10.1124/pr.110.003038
A crystallographic view of interactions between Dbs and Cdc42: PH domain-assisted guanine nucleotide exchange
The EMBO Journal / Mar 15, 2002
Rossman, K. L., Worthylake, D. K., Snyder, J. T., Siderovski, D. P., Campbell, S. L., & Sondek, J. (2002). A crystallographic view of interactions between Dbs and Cdc42: PH domain-assisted guanine nucleotide exchange. The EMBO Journal, 21(6), 1315–1326. https://doi.org/10.1093/emboj/21.6.1315
Structural determinants for GoLoco-induced inhibition of nucleotide release by Gα subunits
Nature / Apr 01, 2002
Kimple, R. J., Kimple, M. E., Betts, L., Sondek, J., & Siderovski, D. P. (2002). Structural determinants for GoLoco-induced inhibition of nucleotide release by Gα subunits. Nature, 416(6883), 878–881. https://doi.org/10.1038/416878a
The telomerase reverse transcriptase is limiting and necessary for telomerase function in vivo
Current Biology / Nov 01, 2000
Liu, Y., Snow, B. E., Hande, M. P., Yeung, D., Erdmann, N. J., Wakeham, A., Itie, A., Siderovski, D. P., Lansdorp, P. M., Robinson, M. O., & Harrington, L. (2000). The telomerase reverse transcriptase is limiting and necessary for telomerase function in vivo. Current Biology, 10(22), 1459–1462. https://doi.org/10.1016/s0960-9822(00)00805-8
A new family of regulators of G-protein-coupled receptors?
Current Biology / Feb 01, 1996
Siderovski, D. P., Hessel, A., Chung, S., Mak, T. W., & Tyers, M. (1996). A new family of regulators of G-protein-coupled receptors? Current Biology, 6(2), 211–212. https://doi.org/10.1016/s0960-9822(02)00454-2
Structural basis for the selective activation of Rho GTPases by Dbl exchange factors
Nature Structural Biology / May 13, 2002
Snyder, J. T., Worthylake, D. K., Rossman, K. L., Betts, L., Pruitt, W. M., Siderovski, D. P., Der, C. J., & Sondek, J. (2002). Structural basis for the selective activation of Rho GTPases by Dbl exchange factors. Nature Structural Biology, 9(6), 468–475. https://doi.org/10.1038/nsb796
Molecular cloning ofLSIRF, a lymphoid-specific member of the interferon regulatory factor family that binds the interferon-stimulated response element (ISRE)
Nucleic Acids Research / Jan 01, 1995
Matsuyama, T., Grossman, A., Mittrücker, H.-W., Siderovski, D. P., Kiefer, F., Kawakami, T., Richardson, C. D., Taniguchi, T., Yoshinaga, S. K., & Mak, T. W. (1995). Molecular cloning ofLSIRF, a lymphoid-specific member of the interferon regulatory factor family that binds the interferon-stimulated response element (ISRE). Nucleic Acids Research, 23(12), 2127–2136. https://doi.org/10.1093/nar/23.12.2127
The Mitochondrial Proteins NLRX1 and TUFM Form a Complex that Regulates Type I Interferon and Autophagy
Immunity / Jun 01, 2012
Lei, Y., Wen, H., Yu, Y., Taxman, D. J., Zhang, L., Widman, D. G., Swanson, K. V., Wen, K.-W., Damania, B., Moore, C. B., Giguère, P. M., Siderovski, D. P., Hiscott, J., Razani, B., Semenkovich, C. F., Chen, X., & Ting, J. P.-Y. (2012). The Mitochondrial Proteins NLRX1 and TUFM Form a Complex that Regulates Type I Interferon and Autophagy. Immunity, 36(6), 933–946. https://doi.org/10.1016/j.immuni.2012.03.025
RGS12 and RGS14 GoLoco Motifs Are GαiInteraction Sites with Guanine Nucleotide Dissociation Inhibitor Activity
Journal of Biological Chemistry / Aug 01, 2001
Kimple, R. J., De Vries, L., Tronchère, H., Behe, C. I., Morris, R. A., Farquhar, M. G., & Siderovski, D. P. (2001). RGS12 and RGS14 GoLoco Motifs Are GαiInteraction Sites with Guanine Nucleotide Dissociation Inhibitor Activity. Journal of Biological Chemistry, 276(31), 29275–29281. https://doi.org/10.1074/jbc.m103208200
GTPase Activating Specificity of RGS12 and Binding Specificity of an Alternatively Spliced PDZ (PSD-95/Dlg/ZO-1) Domain
Journal of Biological Chemistry / Jul 01, 1998
Snow, B. E., Hall, R. A., Krumins, A. M., Brothers, G. M., Bouchard, D., Brothers, C. A., Chung, S., Mangion, J., Gilman, A. G., Lefkowitz, R. J., & Siderovski, D. P. (1998). GTPase Activating Specificity of RGS12 and Binding Specificity of an Alternatively Spliced PDZ (PSD-95/Dlg/ZO-1) Domain. Journal of Biological Chemistry, 273(28), 17749–17755. https://doi.org/10.1074/jbc.273.28.17749
GTPase acceleration as the rate-limiting step in Arabidopsis G protein-coupled sugar signaling
Proceedings of the National Academy of Sciences / Oct 30, 2007
Johnston, C. A., Taylor, J. P., Gao, Y., Kimple, A. J., Grigston, J. C., Chen, J.-G., Siderovski, D. P., Jones, A. M., & Willard, F. S. (2007). GTPase acceleration as the rate-limiting step in Arabidopsis G protein-coupled sugar signaling. Proceedings of the National Academy of Sciences, 104(44), 17317–17322. https://doi.org/10.1073/pnas.0704751104
Return of the GDI: The GoLoco Motif in Cell Division
Annual Review of Biochemistry / Jun 01, 2004
Willard, F. S., Kimple, R. J., & Siderovski, D. P. (2004). Return of the GDI: The GoLoco Motif in Cell Division. Annual Review of Biochemistry, 73(1), 925–951. https://doi.org/10.1146/annurev.biochem.73.011303.073756
Regulator of G protein signaling 2 mediates cardiac compensation to pressure overload and antihypertrophic effects of PDE5 inhibition in mice
Journal of Clinical Investigation / Jan 05, 2009
Takimoto, E., Koitabashi, N., Hsu, S., Ketner, E. A., Zhang, M., Nagayama, T., Bedja, D., Gabrielson, K. L., Blanton, R., Siderovski, D. P., Mendelsohn, M. E., & Kass, D. A. (2009). Regulator of G protein signaling 2 mediates cardiac compensation to pressure overload and antihypertrophic effects of PDE5 inhibition in mice. Journal of Clinical Investigation. https://doi.org/10.1172/jci35620
RIC-8 Is Required for GPR-1/2-Dependent Gα Function during Asymmetric Division of C. elegans Embryos
Cell / Oct 01, 2004
Afshar, K., Willard, F. S., Colombo, K., Johnston, C. A., McCudden, C. R., Siderovski, D. P., & Gönczy, P. (2004). RIC-8 Is Required for GPR-1/2-Dependent Gα Function during Asymmetric Division of C. elegans Embryos. Cell, 119(2), 219–230. https://doi.org/10.1016/j.cell.2004.09.026
Structural diversity in the RGS domain and its interaction with heterotrimeric G protein α-subunits
Proceedings of the National Academy of Sciences / Apr 29, 2008
Soundararajan, M., Willard, F. S., Kimple, A. J., Turnbull, A. P., Ball, L. J., Schoch, G. A., Gileadi, C., Fedorov, O. Y., Dowler, E. F., Higman, V. A., Hutsell, S. Q., Sundström, M., Doyle, D. A., & Siderovski, D. P. (2008). Structural diversity in the RGS domain and its interaction with heterotrimeric G protein α-subunits. Proceedings of the National Academy of Sciences, 105(17), 6457–6462. https://doi.org/10.1073/pnas.0801508105
LGN regulates mitotic spindle orientation during epithelial morphogenesis
Journal of Cell Biology / Apr 12, 2010
Zheng, Z., Zhu, H., Wan, Q., Liu, J., Xiao, Z., Siderovski, D. P., & Du, Q. (2010). LGN regulates mitotic spindle orientation during epithelial morphogenesis. Journal of Cell Biology, 189(2), 275–288. https://doi.org/10.1083/jcb.200910021
The GoLoco motif: a Gαi/o binding motif and potential guanine-nucleotide exchange factor
Trends in Biochemical Sciences / Sep 01, 1999
Siderovski, D. P., Diversé-Pierluissi, M. A., & De Vries, L. (1999). The GoLoco motif: a Gαi/o binding motif and potential guanine-nucleotide exchange factor. Trends in Biochemical Sciences, 24(9), 340–341. https://doi.org/10.1016/s0968-0004(99)01441-3
Activator of G protein signaling 3 is a guanine dissociation inhibitor for Gα i subunits
Proceedings of the National Academy of Sciences / Dec 19, 2000
De Vries, L., Fischer, T., Tronchère, H., Brothers, G. M., Strockbine, B., Siderovski, D. P., & Farquhar, M. G. (2000). Activator of G protein signaling 3 is a guanine dissociation inhibitor for Gα i subunits. Proceedings of the National Academy of Sciences, 97(26), 14364–14369. https://doi.org/10.1073/pnas.97.26.14364
HIV-1 Tat Directly Interacts with the Interferon-Induced, Double-Stranded RNA-Dependent Kinase, PKR
Virology / Nov 01, 1995
MCMILLAN, N. A. J., CHUN, R. F., SIDEROVSKI, D. P., GALABRU, J., TOONE, W. M., SAMUEL, C. E., MAK, T. W., HOVANESSIAN, A. G., JEANG, K.-T., & WILLIAMS, B. R. G. (1995). HIV-1 Tat Directly Interacts with the Interferon-Induced, Double-Stranded RNA-Dependent Kinase, PKR. Virology, 213(2), 413–424. https://doi.org/10.1006/viro.1995.0014
Receptor-Mediated Activation of Heterotrimeric G-Proteins: Current Structural Insights
Molecular Pharmacology / Apr 12, 2007
Johnston, C. A., & Siderovski, D. P. (2007). Receptor-Mediated Activation of Heterotrimeric G-Proteins: Current Structural Insights. Molecular Pharmacology, 72(2), 219–230. https://doi.org/10.1124/mol.107.034348
Rgs1 regulates multiple Gα subunits in Magnaporthe pathogenesis, asexual growth and thigmotropism
The EMBO Journal / Jan 25, 2007
Liu, H., Suresh, A., Willard, F. S., Siderovski, D. P., Lu, S., & Naqvi, N. I. (2007). Rgs1 regulates multiple Gα subunits in Magnaporthe pathogenesis, asexual growth and thigmotropism. The EMBO Journal, 26(3), 690–700. https://doi.org/10.1038/sj.emboj.7601536
A Human Gene Encoding a Putative Basic Helix–Loop–Helix Phosphoprotein Whose mRNA Increases Rapidly in Cycloheximide-Treated Blood Mononuclear Cells
DNA and Cell Biology / Feb 01, 1994
SIDEROVSKI, D. P., HEXIMER, S. P., & FORSDYKE, D. R. (1994). A Human Gene Encoding a Putative Basic Helix–Loop–Helix Phosphoprotein Whose mRNA Increases Rapidly in Cycloheximide-Treated Blood Mononuclear Cells. DNA and Cell Biology, 13(2), 125–147. https://doi.org/10.1089/dna.1994.13.125
Activation of Phospholipase C-ε by Heterotrimeric G Protein βγ-Subunits
Journal of Biological Chemistry / Dec 01, 2001
Wing, M. R., Houston, D., Kelley, G. G., Der, C. J., Siderovski, D. P., & Harden, T. K. (2001). Activation of Phospholipase C-ε by Heterotrimeric G Protein βγ-Subunits. Journal of Biological Chemistry, 276(51), 48257–48261. https://doi.org/10.1074/jbc.c100574200
Whither Goest the RGS Proteins?
Critical Reviews in Biochemistry and Molecular Biology / Jan 01, 1999
Siderovski, D. P., Strockbine, B., & Behe, C. I. (1999). Whither Goest the RGS Proteins? Critical Reviews in Biochemistry and Molecular Biology, 34(4), 215–251. https://doi.org/10.1080/10409239991209273
Mammalian Inscuteable Regulates Spindle Orientation and Cell Fate in the Developing Retina
Neuron / Nov 01, 2005
Žigman, M., Cayouette, M., Charalambous, C., Schleiffer, A., Hoeller, O., Dunican, D., McCudden, C. R., Firnberg, N., Barres, B. A., Siderovski, D. P., & Knoblich, J. A. (2005). Mammalian Inscuteable Regulates Spindle Orientation and Cell Fate in the Developing Retina. Neuron, 48(4), 539–545. https://doi.org/10.1016/j.neuron.2005.09.030
Ric-8 controls Drosophila neural progenitor asymmetric division by regulating heterotrimeric G proteins
Nature Cell Biology / Oct 16, 2005
Wang, H., Ng, K. H., Qian, H., Siderovski, D. P., Chia, W., & Yu, F. (2005). Ric-8 controls Drosophila neural progenitor asymmetric division by regulating heterotrimeric G proteins. Nature Cell Biology, 7(11), 1091–1098. https://doi.org/10.1038/ncb1317
Receptor-selective Effects of Endogenous RGS3 and RGS5 to Regulate Mitogen-activated Protein Kinase Activation in Rat Vascular Smooth Muscle Cells
Journal of Biological Chemistry / Jul 01, 2002
Wang, Q., Liu, M., Mullah, B., Siderovski, D. P., & Neubig, R. R. (2002). Receptor-selective Effects of Endogenous RGS3 and RGS5 to Regulate Mitogen-activated Protein Kinase Activation in Rat Vascular Smooth Muscle Cells. Journal of Biological Chemistry, 277(28), 24949–24958. https://doi.org/10.1074/jbc.m203802200
Fidelity of G protein β-subunit association by the G protein γ-subunit-like domains of RGS6, RGS7, and RGS11
Proceedings of the National Academy of Sciences / May 25, 1999
Snow, B. E., Betts, L., Mangion, J., Sondek, J., & Siderovski, D. P. (1999). Fidelity of G protein β-subunit association by the G protein γ-subunit-like domains of RGS6, RGS7, and RGS11. Proceedings of the National Academy of Sciences, 96(11), 6489–6494. https://doi.org/10.1073/pnas.96.11.6489
PB1 Domain Interaction of p62/Sequestosome 1 and MEKK3 Regulates NF-κB Activation
Journal of Biological Chemistry / Jan 01, 2010
Nakamura, K., Kimple, A. J., Siderovski, D. P., & Johnson, G. L. (2010). PB1 Domain Interaction of p62/Sequestosome 1 and MEKK3 Regulates NF-κB Activation. Journal of Biological Chemistry, 285(3), 2077–2089. https://doi.org/10.1074/jbc.m109.065102
Comment on "A G Protein–Coupled Receptor Is a Plasma Membrane Receptor for the Plant Hormone Abscisic Acid"
Science / Nov 09, 2007
Johnston, C. A., Temple, B. R., Chen, J.-G., Gao, Y., Moriyama, E. N., Jones, A. M., Siderovski, D. P., & Willard, F. S. (2007). Comment on “A G Protein–Coupled Receptor Is a Plasma Membrane Receptor for the Plant Hormone Abscisic Acid.” Science, 318(5852), 914–914. https://doi.org/10.1126/science.1143230
Molecular Cloning and Expression Analysis of RatRgs12andRgs14
Biochemical and Biophysical Research Communications / Apr 01, 1997
Snow, B. E., Antonio, L., Suggs, S., Gutstein, H. B., & Siderovski, D. P. (1997). Molecular Cloning and Expression Analysis of RatRgs12andRgs14. Biochemical and Biophysical Research Communications, 233(3), 770–777. https://doi.org/10.1006/bbrc.1997.6537
Clathrin Adaptor AP2 Regulates Thrombin Receptor Constitutive Internalization and Endothelial Cell Resensitization
Molecular and Cellular Biology / Apr 01, 2006
Paing, M. M., Johnston, C. A., Siderovski, D. P., & Trejo, J. (2006). Clathrin Adaptor AP2 Regulates Thrombin Receptor Constitutive Internalization and Endothelial Cell Resensitization. Molecular and Cellular Biology, 26(8), 3231–3242. https://doi.org/10.1128/mcb.26.8.3231-3242.2006
Quantitative Analysis of the Effect of Phosphoinositide Interactions on the Function of Dbl Family Proteins
Journal of Biological Chemistry / Dec 01, 2001
Snyder, J. T., Rossman, K. L., Baumeister, M. A., Pruitt, W. M., Siderovski, D. P., Der, C. J., Lemmon, M. A., & Sondek, J. (2001). Quantitative Analysis of the Effect of Phosphoinositide Interactions on the Function of Dbl Family Proteins. Journal of Biological Chemistry, 276(49), 45868–45875. https://doi.org/10.1074/jbc.m106731200
Telomerase-Associated Protein TEP1 Is Not Essential for Telomerase Activity or Telomere Length Maintenance In Vivo
Molecular and Cellular Biology / Nov 01, 2000
Liu, Y., Snow, B. E., Hande, M. P., Baerlocher, G., Kickhoefer, V. A., Yeung, D., Wakeham, A., Itie, A., Siderovski, D. P., Lansdorp, P. M., Robinson, M. O., & Harrington, L. (2000). Telomerase-Associated Protein TEP1 Is Not Essential for Telomerase Activity or Telomere Length Maintenance In Vivo. Molecular and Cellular Biology, 20(21), 8178–8184. https://doi.org/10.1128/mcb.20.21.8178-8184.2000
Crystal structure of the multifunctional Gβ5–RGS9 complex
Nature Structural & Molecular Biology / Jan 20, 2008
Cheever, M. L., Snyder, J. T., Gershburg, S., Siderovski, D. P., Harden, T. K., & Sondek, J. (2008). Crystal structure of the multifunctional Gβ5–RGS9 complex. Nature Structural & Molecular Biology, 15(2), 155–162. https://doi.org/10.1038/nsmb.1377
Structure-based Protocol for Identifying Mutations that Enhance Protein–Protein Binding Affinities
Journal of Molecular Biology / Aug 01, 2007
Sammond, D. W., Eletr, Z. M., Purbeck, C., Kimple, R. J., Siderovski, D. P., & Kuhlman, B. (2007). Structure-based Protocol for Identifying Mutations that Enhance Protein–Protein Binding Affinities. Journal of Molecular Biology, 371(5), 1392–1404. https://doi.org/10.1016/j.jmb.2007.05.096
Chronic Olanzapine Treatment Causes Differential Expression of Genes in Frontal Cortex of Rats as Revealed by DNA Microarray Technique
Neuropsychopharmacology / Jan 11, 2006
Fatemi, S. H., Reutiman, T. J., Folsom, T. D., Bell, C., Nos, L., Fried, P., Pearce, D. A., Singh, S., Siderovski, D. P., Willard, F. S., & Fukuda, M. (2006). Chronic Olanzapine Treatment Causes Differential Expression of Genes in Frontal Cortex of Rats as Revealed by DNA Microarray Technique. Neuropsychopharmacology, 31(9), 1888–1899. https://doi.org/10.1038/sj.npp.1301002
Cortical localization of the Gα protein GPA-16 requires RIC-8 function duringC. elegansasymmetric cell division
Development / Oct 15, 2005
Afshar, K., Willard, F. S., Colombo, K., Siderovski, D. P., & Gönczy, P. (2005). Cortical localization of the Gα protein GPA-16 requires RIC-8 function duringC. elegansasymmetric cell division. Development, 132(20), 4449–4459. https://doi.org/10.1242/dev.02039
Structure of Gαi1 Bound to a GDP-Selective Peptide Provides Insight into Guanine Nucleotide Exchange
Structure / Jul 01, 2005
Johnston, C. A., Willard, F. S., Jezyk, M. R., Fredericks, Z., Bodor, E. T., Jones, M. B., Blaesius, R., Watts, V. J., Harden, T. K., Sondek, J., Ramer, J. K., & Siderovski, D. P. (2005). Structure of Gαi1 Bound to a GDP-Selective Peptide Provides Insight into Guanine Nucleotide Exchange. Structure, 13(7), 1069–1080. https://doi.org/10.1016/j.str.2005.04.007
Cloning of Human Lymphocyte-Specific Interferon Regulatory Factor (hLSIRF/hIRF4) and Mapping of the Gene to 6p23–p25
Genomics / Oct 01, 1996
Grossman, A., Mittrücker, H.-W., Nicholl, J., Suzuki, A., Chung, S., Antonio, L., Suggs, S., Sutherland, G. R., Siderovski, D. P., & Mak, T. W. (1996). Cloning of Human Lymphocyte-Specific Interferon Regulatory Factor (hLSIRF/hIRF4) and Mapping of the Gene to 6p23–p25. Genomics, 37(2), 229–233. https://doi.org/10.1006/geno.1996.0547
Regulators of G-protein Signaling accelerate GPCR signaling kinetics and govern sensitivity solely by accelerating GTPase activity
Proceedings of the National Academy of Sciences / Mar 29, 2010
Lambert, N. A., Johnston, C. A., Cappell, S. D., Kuravi, S., Kimple, A. J., Willard, F. S., & Siderovski, D. P. (2010). Regulators of G-protein Signaling accelerate GPCR signaling kinetics and govern sensitivity solely by accelerating GTPase activity. Proceedings of the National Academy of Sciences, 107(15), 7066–7071. https://doi.org/10.1073/pnas.0912934107
Gβγ Isoforms Selectively Rescue Plasma Membrane Localization and Palmitoylation of Mutant Gαs and Gαq
Journal of Biological Chemistry / Jun 01, 2001
Evanko, D. S., Thiyagarajan, M. M., Siderovski, D. P., & Wedegaertner, P. B. (2001). Gβγ Isoforms Selectively Rescue Plasma Membrane Localization and Palmitoylation of Mutant Gαs and Gαq. Journal of Biological Chemistry, 276(26), 23945–23953. https://doi.org/10.1074/jbc.m101154200
β 2 -Adrenoceptor agonist-induced RGS2 expression is a genomic mechanism of bronchoprotection that is enhanced by glucocorticoids
Proceedings of the National Academy of Sciences / Nov 11, 2011
Holden, N. S., Bell, M. J., Rider, C. F., King, E. M., Gaunt, D. D., Leigh, R., Johnson, M., Siderovski, D. P., Heximer, S. P., Giembycz, M. A., & Newton, R. (2011). β 2 -Adrenoceptor agonist-induced RGS2 expression is a genomic mechanism of bronchoprotection that is enhanced by glucocorticoids. Proceedings of the National Academy of Sciences, 108(49), 19713–19718. https://doi.org/10.1073/pnas.1110226108
A Set of Human Putative Lymphocyte G0/G1Switch Genes Includes Genes Homologous to Rodent Cytokine and Zinc Finger Protein-Encoding Genes
DNA and Cell Biology / Oct 01, 1990
SIDEROVSKI, D. P., BLUM, S., FORSDYKE, R. E., & FORSDYKE, D. R. (1990). A Set of Human Putative Lymphocyte G0/G1Switch Genes Includes Genes Homologous to Rodent Cytokine and Zinc Finger Protein-Encoding Genes. DNA and Cell Biology, 9(8), 579–587. https://doi.org/10.1089/dna.1990.9.579
Selective role for RGS12 as a Ras/Raf/MEK scaffold in nerve growth factor-mediated differentiation
The EMBO Journal / Mar 22, 2007
Willard, M. D., Willard, F. S., Li, X., Cappell, S. D., Snider, W. D., & Siderovski, D. P. (2007). Selective role for RGS12 as a Ras/Raf/MEK scaffold in nerve growth factor-mediated differentiation. The EMBO Journal, 26(8), 2029–2040. https://doi.org/10.1038/sj.emboj.7601659
Gα12/13- and Rho-Dependent Activation of Phospholipase C-ϵ by Lysophosphatidic Acid and Thrombin Receptors
Molecular Pharmacology / Mar 22, 2006
Hains, M. D., Wing, M. R., Maddileti, S., Siderovski, D. P., & Harden, T. K. (2006). Gα12/13- and Rho-Dependent Activation of Phospholipase C-ϵ by Lysophosphatidic Acid and Thrombin Receptors. Molecular Pharmacology, 69(6), 2068–2075. https://doi.org/10.1124/mol.105.017921
Exome Sequencing in 53 Sporadic Cases of Schizophrenia Identifies 18 Putative Candidate Genes
PLoS ONE / Nov 24, 2014
Guipponi, M., Santoni, F. A., Setola, V., Gehrig, C., Rotharmel, M., Cuenca, M., Guillin, O., Dikeos, D., Georgantopoulos, G., Papadimitriou, G., Curtis, L., Méary, A., Schürhoff, F., Jamain, S., Avramopoulos, D., Leboyer, M., Rujescu, D., Pulver, A., Campion, D., … Antonarakis, S. E. (2014). Exome Sequencing in 53 Sporadic Cases of Schizophrenia Identifies 18 Putative Candidate Genes. PLoS ONE, 9(11), e112745. https://doi.org/10.1371/journal.pone.0112745
Structural Determinants of G-protein α Subunit Selectivity by Regulator of G-protein Signaling 2 (RGS2)
Journal of Biological Chemistry / Jul 01, 2009
Kimple, A. J., Soundararajan, M., Hutsell, S. Q., Roos, A. K., Urban, D. J., Setola, V., Temple, B. R. S., Roth, B. L., Knapp, S., Willard, F. S., & Siderovski, D. P. (2009). Structural Determinants of G-protein α Subunit Selectivity by Regulator of G-protein Signaling 2 (RGS2). Journal of Biological Chemistry, 284(29), 19402–19411. https://doi.org/10.1074/jbc.m109.024711
Genome-Scale Analysis Reveals Sst2 as the Principal Regulator of Mating Pheromone Signaling in the Yeast Saccharomyces cerevisiae
Eukaryotic Cell / Feb 01, 2006
Chasse, S. A., Flanary, P., Parnell, S. C., Hao, N., Cha, J. Y., Siderovski, D. P., & Dohlman, H. G. (2006). Genome-Scale Analysis Reveals Sst2 as the Principal Regulator of Mating Pheromone Signaling in the Yeast Saccharomyces cerevisiae. Eukaryotic Cell, 5(2), 330–346. https://doi.org/10.1128/ec.5.2.330-346.2006
High-Affinity Immobilization of Proteins Using Biotin- and GST-Based Coupling Strategies
Methods in Molecular Biology / Jan 01, 2010
Hutsell, S. Q., Kimple, R. J., Siderovski, D. P., Willard, F. S., & Kimple, A. J. (2010). High-Affinity Immobilization of Proteins Using Biotin- and GST-Based Coupling Strategies. In Surface Plasmon Resonance (pp. 75–90). Humana Press. https://doi.org/10.1007/978-1-60761-670-2_4
Selective Regulation of N-Type Ca Channels by Different Combinations of G-Protein β/γ Subunits and RGS Proteins
The Journal of Neuroscience / Oct 01, 2000
Zhou, J. Y., Siderovski, D. P., & Miller, R. J. (2000). Selective Regulation of N-Type Ca Channels by Different Combinations of G-Protein β/γ Subunits and RGS Proteins. The Journal of Neuroscience, 20(19), 7143–7148. https://doi.org/10.1523/jneurosci.20-19-07143.2000
Functional relevance of the disulfide-linked complex of the N-terminal PDZ domain of InaD with NorpA
The EMBO Journal / Aug 15, 2001
Kimple, M. E. (2001). Functional relevance of the disulfide-linked complex of the N-terminal PDZ domain of InaD with NorpA. The EMBO Journal, 20(16), 4414–4422. https://doi.org/10.1093/emboj/20.16.4414
Guanine nucleotide dissociation inhibitor activity of the triple GoLoco motif protein G18: alanine-to-aspartate mutation restores function to an inactive second GoLoco motif
Biochemical Journal / Mar 15, 2004
KIMPLE, R. J., WILLARD, F. S., HAINS, M. D., JONES, M. B., NWEKE, G. K., & SIDEROVSKI, D. P. (2004). Guanine nucleotide dissociation inhibitor activity of the triple GoLoco motif protein G18: alanine-to-aspartate mutation restores function to an inactive second GoLoco motif. Biochemical Journal, 378(3), 801–808. https://doi.org/10.1042/bj20031686
The G DIMER as a NOVEL SOURCE of SELECTIVITY in G-Protein Signaling: GGL-ing AT CONVENTION
Molecular Interventions / Aug 01, 2004
Jones, M. B. (2004). The G DIMER as a NOVEL SOURCE of SELECTIVITY in G-Protein Signaling: GGL-ing AT CONVENTION. Molecular Interventions, 4(4), 200–214. https://doi.org/10.1124/mi.4.4.4
Dynamic Regulation of Mammalian Numb by G Protein-coupled Receptors and Protein Kinase C Activation: Structural Determinants of Numb Association with the Cortical Membrane
Molecular Biology of the Cell / Sep 01, 2006
Dho, S. E., Trejo, J., Siderovski, D. P., & McGlade, C. J. (2006). Dynamic Regulation of Mammalian Numb by G Protein-coupled Receptors and Protein Kinase C Activation: Structural Determinants of Numb Association with the Cortical Membrane. Molecular Biology of the Cell, 17(9), 4142–4155. https://doi.org/10.1091/mbc.e06-02-0097
D2 dopamine receptor activation of potassium channels is selectively decoupled by Gαi‐specific GoLoco motif peptides
Journal of Neurochemistry / Feb 17, 2005
Webb, C. K., McCudden, C. R., Willard, F. S., Kimple, R. J., Siderovski, D. P., & Oxford, G. S. (2005). D2 dopamine receptor activation of potassium channels is selectively decoupled by Gαi‐specific GoLoco motif peptides. Journal of Neurochemistry, 92(6), 1408–1418. Portico. https://doi.org/10.1111/j.1471-4159.2004.02997.x
G protein signaling in the parasite Entamoeba histolytica
Experimental & Molecular Medicine / Mar 22, 2013
Bosch, D. E., & Siderovski, D. P. (2013). G protein signaling in the parasite Entamoeba histolytica. Experimental & Molecular Medicine, 45(3), e15–e15. https://doi.org/10.1038/emm.2013.30
Gβ Association and Effector Interaction Selectivities of the Divergent Gγ Subunit Gγ13
Journal of Biological Chemistry / Dec 01, 2001
Blake, B. L., Wing, M. R., Zhou, J. Y., Lei, Q., Hillmann, J. R., Behe, C. I., Morris, R. A., Harden, T. K., Bayliss, D. A., Miller, R. J., & Siderovski, D. P. (2001). Gβ Association and Effector Interaction Selectivities of the Divergent Gγ Subunit Gγ13. Journal of Biological Chemistry, 276(52), 49267–49274. https://doi.org/10.1074/jbc.m106565200
The RGS protein inhibitor CCG-4986 is a covalent modifier of the RGS4 Gα-interaction face
Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics / Sep 01, 2007
Kimple, A. J., Willard, F. S., Giguère, P. M., Johnston, C. A., Mocanu, V., & Siderovski, D. P. (2007). The RGS protein inhibitor CCG-4986 is a covalent modifier of the RGS4 Gα-interaction face. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1774(9), 1213–1220. https://doi.org/10.1016/j.bbapap.2007.06.002
Established and Emerging Fluorescence-Based Assays for G-Protein Function: Ras-Superfamily GTPases
Combinatorial Chemistry & High Throughput Screening / Jun 01, 2003
Rojas, R., Kimple, R., Rossman, K., Siderovski, D., & Sondek, J. (2003). Established and Emerging Fluorescence-Based Assays for G-Protein Function: Ras-Superfamily GTPases. Combinatorial Chemistry & High Throughput Screening, 6(4), 409–418. https://doi.org/10.2174/138620703106298509
A Capture Coupling Method for the Covalent Immobilization of Hexahistidine Tagged Proteins for Surface Plasmon Resonance
Methods in Molecular Biology / Jan 01, 2010
Kimple, A. J., Muller, R. E., Siderovski, D. P., & Willard, F. S. (2010). A Capture Coupling Method for the Covalent Immobilization of Hexahistidine Tagged Proteins for Surface Plasmon Resonance. In Surface Plasmon Resonance (pp. 91–100). Humana Press. https://doi.org/10.1007/978-1-60761-670-2_5
Induction of Regulator of G-Protein Signaling 2 Expression by Long-Acting β2-Adrenoceptor Agonists and Glucocorticoids in Human Airway Epithelial Cells
Journal of Pharmacology and Experimental Therapeutics / Oct 25, 2013
Holden, N. S., George, T., Rider, C. F., Chandrasekhar, A., Shah, S., Kaur, M., Johnson, M., Siderovski, D. P., Leigh, R., Giembycz, M. A., & Newton, R. (2013). Induction of Regulator of G-Protein Signaling 2 Expression by Long-Acting β2-Adrenoceptor Agonists and Glucocorticoids in Human Airway Epithelial Cells. Journal of Pharmacology and Experimental Therapeutics, 348(1), 12–24. https://doi.org/10.1124/jpet.113.204586
Computational Design of the Sequence and Structure of a Protein-Binding Peptide
Journal of the American Chemical Society / Mar 09, 2011
Sammond, D. W., Bosch, D. E., Butterfoss, G. L., Purbeck, C., Machius, M., Siderovski, D. P., & Kuhlman, B. (2011). Computational Design of the Sequence and Structure of a Protein-Binding Peptide. Journal of the American Chemical Society, 133(12), 4190–4192. https://doi.org/10.1021/ja110296z
Regulator of G-Protein Signaling 14 (RGS14) Is a Selective H-Ras Effector
PLoS ONE / Mar 25, 2009
Willard, F. S., Willard, M. D., Kimple, A. J., Soundararajan, M., Oestreich, E. A., Li, X., Sowa, N. A., Kimple, R. J., Doyle, D. A., Der, C. J., Zylka, M. J., Snider, W. D., & Siderovski, D. P. (2009). Regulator of G-Protein Signaling 14 (RGS14) Is a Selective H-Ras Effector. PLoS ONE, 4(3), e4884. https://doi.org/10.1371/journal.pone.0004884
A direct fluorescence-based assay for RGS domain GTPase accelerating activity
Analytical Biochemistry / May 01, 2005
Willard, F. S., Kimple, A. J., Johnston, C. A., & Siderovski, D. P. (2005). A direct fluorescence-based assay for RGS domain GTPase accelerating activity. Analytical Biochemistry, 340(2), 341–351. https://doi.org/10.1016/j.ab.2005.02.015
Integrating energy calculations with functional assays to decipher the specificity of G protein–RGS protein interactions
Nature Structural & Molecular Biology / Jun 19, 2011
Kosloff, M., Travis, A. M., Bosch, D. E., Siderovski, D. P., & Arshavsky, V. Y. (2011). Integrating energy calculations with functional assays to decipher the specificity of G protein–RGS protein interactions. Nature Structural & Molecular Biology, 18(7), 846–853. https://doi.org/10.1038/nsmb.2068
A Point Mutation to Gαi Selectively Blocks GoLoco Motif Binding
Journal of Biological Chemistry / Dec 01, 2008
Willard, F. S., Zheng, Z., Guo, J., Digby, G. J., Kimple, A. J., Conley, J. M., Johnston, C. A., Bosch, D., Willard, M. D., Watts, V. J., Lambert, N. A., Ikeda, S. R., Du, Q., & Siderovski, D. P. (2008). A Point Mutation to Gαi Selectively Blocks GoLoco Motif Binding. Journal of Biological Chemistry, 283(52), 36698–36710. https://doi.org/10.1074/jbc.m804936200
The GoLoco Motif: Heralding a New Tango Between G Protein Signaling and Cell Division
Molecular Interventions / Apr 01, 2002
Kimple, R. J. (2002). The GoLoco Motif: Heralding a New Tango Between G Protein Signaling and Cell Division. Molecular Interventions, 2(2), 88–100. https://doi.org/10.1124/mi.2.2.88
Gα selectivity and inhibitor function of the multiple GoLoco motif protein GPSM2/LGN
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research / Sep 01, 2005
McCudden, C. R., Willard, F. S., Kimple, R. J., Johnston, C. A., Hains, M. D., Jones, M. B., & Siderovski, D. P. (2005). Gα selectivity and inhibitor function of the multiple GoLoco motif protein GPSM2/LGN. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1745(2), 254–264. https://doi.org/10.1016/j.bbamcr.2005.05.002
Minimal Determinants for Binding Activated Gα from the Structure of a Gαi1−Peptide Dimer,
Biochemistry / Aug 30, 2006
Johnston, C. A., Lobanova, E. S., Shavkunov, A. S., Low, J., Ramer, J. K., Blaesius, R., Fredericks, Z., Willard, F. S., Kuhlman, B., Arshavsky, V. Y., & Siderovski, D. P. (2006). Minimal Determinants for Binding Activated Gα from the Structure of a Gαi1−Peptide Dimer,. Biochemistry, 45(38), 11390–11400. https://doi.org/10.1021/bi0613832
Cloning of a retinally abundant regulator of G-protein signaling (RGS-r/RGS16): genomic structure and chromosomal localization of the human gene
Gene / Jan 01, 1998
Snow, B. E., Antonio, L., Suggs, S., & Siderovski, D. P. (1998). Cloning of a retinally abundant regulator of G-protein signaling (RGS-r/RGS16): genomic structure and chromosomal localization of the human gene. Gene, 206(2), 247–253. https://doi.org/10.1016/s0378-1119(97)00593-3
Inhibition of Dopamine Transporter Activity by G Protein βγ Subunits
PLoS ONE / Mar 26, 2013
Garcia-Olivares, J., Torres-Salazar, D., Owens, W. A., Baust, T., Siderovski, D. P., Amara, S. G., Zhu, J., Daws, L. C., & Torres, G. E. (2013). Inhibition of Dopamine Transporter Activity by G Protein βγ Subunits. PLoS ONE, 8(3), e59788. https://doi.org/10.1371/journal.pone.0059788
The effect of RGS12 on PDGFβ receptor signalling to p42/p44 mitogen activated protein kinase in mammalian cells
Cellular Signalling / Jul 01, 2006
Sambi, B. S., Hains, M. D., Waters, C. M., Connell, M. C., Willard, F. S., Kimple, A. J., Pyne, S., Siderovski, D. P., & Pyne, N. J. (2006). The effect of RGS12 on PDGFβ receptor signalling to p42/p44 mitogen activated protein kinase in mammalian cells. Cellular Signalling, 18(7), 971–981. https://doi.org/10.1016/j.cellsig.2005.08.003
Cooperative interaction between the DNA-binding domains of PU.1 and IRF4
Journal of Molecular Biology / Jun 01, 1998
Yee, A. A., Yin, P., Siderovski, D. P., Mak, T. W., Litchfield, D. W., & Arrowsmith, C. H. (1998). Cooperative interaction between the DNA-binding domains of PU.1 and IRF4. Journal of Molecular Biology, 279(5), 1075–1083. https://doi.org/10.1006/jmbi.1998.1838
Purification and In Vitro Functional Analysis of the Arabidopsis thaliana Regulator of G-Protein Signaling-1
Regulators of G-Protein Signaling, Part A / Jan 01, 2004
Willard, F. S., & Siderovski, D. P. (2004). Purification and In Vitro Functional Analysis of the Arabidopsis thaliana Regulator of G-Protein Signaling-1. In Methods in Enzymology (pp. 320–338). Elsevier. https://doi.org/10.1016/s0076-6879(04)89019-0
Covalent immobilization of histidine-tagged proteins for surface plasmon resonance
Analytical Biochemistry / Jun 01, 2006
Willard, F. S., & Siderovski, D. P. (2006). Covalent immobilization of histidine-tagged proteins for surface plasmon resonance. Analytical Biochemistry, 353(1), 147–149. https://doi.org/10.1016/j.ab.2006.02.004
Established and Emerging Fluorescence-Based Assays for G-Protein Function: Heterotrimeric G-Protein Alpha Subunits and Regulator of G-Protein Signaling (RGS) Proteins
Combinatorial Chemistry & High Throughput Screening / Jun 01, 2003
Kimple, R., Jones, M., Shutes, A., Yerxa, B., Siderovski, D., & Willard, F. (2003). Established and Emerging Fluorescence-Based Assays for G-Protein Function: Heterotrimeric G-Protein Alpha Subunits and Regulator of G-Protein Signaling (RGS) Proteins. Combinatorial Chemistry & High Throughput Screening, 6(4), 399–407. https://doi.org/10.2174/138620703106298491
A P-loop Mutation in Gα Subunits Prevents Transition to the Active State: Implications for G-protein Signaling in Fungal Pathogenesis
PLoS Pathogens / Feb 23, 2012
Bosch, D. E., Willard, F. S., Ramanujam, R., Kimple, A. J., Willard, M. D., Naqvi, N. I., & Siderovski, D. P. (2012). A P-loop Mutation in Gα Subunits Prevents Transition to the Active State: Implications for G-protein Signaling in Fungal Pathogenesis. PLoS Pathogens, 8(2), e1002553. https://doi.org/10.1371/journal.ppat.1002553
A High Throughput Fluorescence Polarization Assay for Inhibitors of the GoLoco Motif/G-alpha Interaction
Combinatorial Chemistry & High Throughput Screening / Jun 01, 2008
Kimple, A., Yasgar, A., Hughes, M., Jadhav, A., Willard, F., Muller, R., Austin, C., Inglese, J., Ibeanu, G., Siderovski, D., & Simeonov, A. (2008). A High Throughput Fluorescence Polarization Assay for Inhibitors of the GoLoco Motif/G-alpha Interaction. Combinatorial Chemistry & High Throughput Screening, 11(5), 396–409. https://doi.org/10.2174/138620708784534770
Regulator of G-protein Signaling-21 (RGS21) Is an Inhibitor of Bitter Gustatory Signaling Found in Lingual and Airway Epithelia
Journal of Biological Chemistry / Dec 01, 2012
Cohen, S. P., Buckley, B. K., Kosloff, M., Garland, A. L., Bosch, D. E., Cheng, G., Radhakrishna, H., Brown, M. D., Willard, F. S., Arshavsky, V. Y., Tarran, R., Siderovski, D. P., & Kimple, A. J. (2012). Regulator of G-protein Signaling-21 (RGS21) Is an Inhibitor of Bitter Gustatory Signaling Found in Lingual and Airway Epithelia. Journal of Biological Chemistry, 287(50), 41706–41719. https://doi.org/10.1074/jbc.m112.423806
Education
University of Toronto
Ph.D., Medical Biophysics / November, 1997
Experience
University of North Carolina at Chapel Hill
Professor / January, 1999 — June, 2012
West Virginia University School of Medicine
E.J. Van Liere Endowed Medicine Professor and Chairman / July, 2012 — February, 2020
Chair of the Dept. of Physiology and Pharmacology
University of North Texas Health Science Center
Professor & Chair / March, 2020 — Present
Links & Social Media
Join Dr. Dave on NotedSource!
Join Now
At NotedSource, we believe that professors, post-docs, scientists and other researchers have deep, untapped knowledge and expertise that can be leveraged to drive innovation within companies. NotedSource is committed to bridging the gap between academia and industry by providing a platform for collaboration with industry and networking with other researchers.
For industry, NotedSource identifies the right academic experts in 24 hours to help organizations build and grow. With a platform of thousands of knowledgeable PhDs, scientists, and industry experts, NotedSource makes connecting and collaborating easy.
For academic researchers such as professors, post-docs, and Ph.D.s, NotedSource provides tools to discover and connect to your colleagues with messaging and news feeds, in addition to the opportunity to be paid for your collaboration with vetted partners.