Stavros Karakalos

Surface Scientist with extensive experience in materials characterization

Santa Clarita, California, United States of America

Research Expertise

Materials Science
Surface Science
Physical Chemistry
Condensed Matter Physics
Heterogeneous Catalysis
Biochemistry
Catalysis
Colloid and Surface Chemistry
Renewable Energy, Sustainability and the Environment
Environmental Chemistry
Pollution
Nuclear Energy and Engineering
Bioengineering
Process Chemistry and Technology
Electrical and Electronic Engineering
Mechanical Engineering
Mechanics of Materials
Surfaces, Coatings and Films
Surfaces and Interfaces
Inorganic Chemistry
Physical and Theoretical Chemistry
Electrochemistry
Energy Engineering and Power Technology
Materials Chemistry
Electronic, Optical and Magnetic Materials
Metals and Alloys
Ceramics and Composites
Industrial and Manufacturing Engineering
Organic Chemistry

About

As a chemical engineer with a passion for advancing materials science, I bring a wealth of expertise to the field of materials characterization and research. My professional journey has been defined by a relentless pursuit of understanding surface phenomena and interfaces through cutting-edge techniques. My academic background has provided me with a strong foundation in chemical engineering, allowing me to delve deeply into the intricate world of materials characterization. Over the years, I have honed my skills in utilizing surface-sensitive techniques to unravel the complexities of various materials. A significant portion of my research endeavors has been dedicated to exploring heterogeneous catalysis and the interfaces crucial to battery technologies. Through meticulous experimentation and analysis, I have contributed to uncovering insights that drive innovation in energy storage and conversion systems. My expertise extends to semiconductor materials, where I have actively engaged in research pertaining to solar cells and electrochemical cells. By leveraging state-of-the-art laboratory facilities, including Ultra High Vacuum techniques and advanced microscopic capabilities such as electron microscopes and energy-dispersive X-ray spectroscopy, I have been able to push the boundaries of what is possible in materials science. At the core of my work lies a commitment to pushing the frontiers of knowledge and driving practical applications. My fully equipped laboratory serves as a hub for interdisciplinary exploration, where collaboration and innovation thrive. I am driven by a profound curiosity to unravel the mysteries of materials behavior and to translate these discoveries into tangible solutions that address pressing societal challenges. With a blend of academic rigor, technical proficiency, and a relentless drive for excellence, I am poised to make enduring contributions to the ever-evolving landscape of materials science and engineering.

Publications

Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation

Journal of the American Chemical Society / Sep 26, 2017

Zhang, H., Hwang, S., Wang, M., Feng, Z., Karakalos, S., Luo, L., Qiao, Z., Xie, X., Wang, C., Su, D., Shao, Y., & Wu, G. (2017). Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation. Journal of the American Chemical Society, 139(40), 14143–14149. https://doi.org/10.1021/jacs.7b06514

Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells

Nature Catalysis / Oct 29, 2018

Li, J., Chen, M., Cullen, D. A., Hwang, S., Wang, M., Li, B., Liu, K., Karakalos, S., Lucero, M., Zhang, H., Lei, C., Xu, H., Sterbinsky, G. E., Feng, Z., Su, D., More, K. L., Wang, G., Wang, Z., & Wu, G. (2018). Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nature Catalysis, 1(12), 935–945. https://doi.org/10.1038/s41929-018-0164-8

Highly active atomically dispersed CoN4 fuel cell cathode catalysts derived from surfactant-assisted MOFs: carbon-shell confinement strategy

Energy & Environmental Science / Jan 01, 2019

He, Y., Hwang, S., Cullen, D. A., Uddin, M. A., Langhorst, L., Li, B., Karakalos, S., Kropf, A. J., Wegener, E. C., Sokolowski, J., Chen, M., Myers, D., Su, D., More, K. L., Wang, G., Litster, S., & Wu, G. (2019). Highly active atomically dispersed CoN4 fuel cell cathode catalysts derived from surfactant-assisted MOFs: carbon-shell confinement strategy. Energy & Environmental Science, 12(1), 250–260. https://doi.org/10.1039/c8ee02694g

Metal-organic framework-derived nitrogen-doped highly disordered carbon for electrochemical ammonia synthesis using N2 and H2O in alkaline electrolytes

Nano Energy / Jun 01, 2018

Mukherjee, S., Cullen, D. A., Karakalos, S., Liu, K., Zhang, H., Zhao, S., Xu, H., More, K. L., Wang, G., & Wu, G. (2018). Metal-organic framework-derived nitrogen-doped highly disordered carbon for electrochemical ammonia synthesis using N2 and H2O in alkaline electrolytes. Nano Energy, 48, 217–226. https://doi.org/10.1016/j.nanoen.2018.03.059

Thermally Driven Structure and Performance Evolution of Atomically Dispersed FeN4 Sites for Oxygen Reduction

Angewandte Chemie International Edition / Nov 11, 2019

Li, J., Zhang, H., Samarakoon, W., Shan, W., Cullen, D. A., Karakalos, S., Chen, M., Gu, D., More, K. L., Wang, G., Feng, Z., Wang, Z., & Wu, G. (2019). Thermally Driven Structure and Performance Evolution of Atomically Dispersed FeN4 Sites for Oxygen Reduction. Angewandte Chemie International Edition, 58(52), 18971–18980. Portico. https://doi.org/10.1002/anie.201909312

Ordered Pt3Co Intermetallic Nanoparticles Derived from Metal–Organic Frameworks for Oxygen Reduction

Nano Letters / Jun 06, 2018

Wang, X. X., Hwang, S., Pan, Y.-T., Chen, K., He, Y., Karakalos, S., Zhang, H., Spendelow, J. S., Su, D., & Wu, G. (2018). Ordered Pt3Co Intermetallic Nanoparticles Derived from Metal–Organic Frameworks for Oxygen Reduction. Nano Letters, 18(7), 4163–4171. https://doi.org/10.1021/acs.nanolett.8b00978

Single Cobalt Sites Dispersed in Hierarchically Porous Nanofiber Networks for Durable and High‐Power PGM‐Free Cathodes in Fuel Cells

Advanced Materials / Oct 15, 2020

He, Y., Guo, H., Hwang, S., Yang, X., He, Z., Braaten, J., Karakalos, S., Shan, W., Wang, M., Zhou, H., Feng, Z., More, K. L., Wang, G., Su, D., Cullen, D. A., Fei, L., Litster, S., & Wu, G. (2020). Single Cobalt Sites Dispersed in Hierarchically Porous Nanofiber Networks for Durable and High‐Power PGM‐Free Cathodes in Fuel Cells. Advanced Materials, 32(46). Portico. https://doi.org/10.1002/adma.202003577

3D porous graphitic nanocarbon for enhancing the performance and durability of Pt catalysts: a balance between graphitization and hierarchical porosity

Energy & Environmental Science / Jan 01, 2019

Qiao, Z., Hwang, S., Li, X., Wang, C., Samarakoon, W., Karakalos, S., Li, D., Chen, M., He, Y., Wang, M., Liu, Z., Wang, G., Zhou, H., Feng, Z., Su, D., Spendelow, J. S., & Wu, G. (2019). 3D porous graphitic nanocarbon for enhancing the performance and durability of Pt catalysts: a balance between graphitization and hierarchical porosity. Energy & Environmental Science, 12(9), 2830–2841. https://doi.org/10.1039/c9ee01899a

Surface refinement and electronic properties of graphene layers grown on copper substrate: An XPS, UPS and EELS study

Applied Surface Science / Sep 01, 2011

Siokou, A., Ravani, F., Karakalos, S., Frank, O., Kalbac, M., & Galiotis, C. (2011). Surface refinement and electronic properties of graphene layers grown on copper substrate: An XPS, UPS and EELS study. Applied Surface Science, 257(23), 9785–9790. https://doi.org/10.1016/j.apsusc.2011.06.017

Morphology Control of Carbon-Free Spinel NiCo2O4 Catalysts for Enhanced Bifunctional Oxygen Reduction and Evolution in Alkaline Media

ACS Applied Materials & Interfaces / Dec 15, 2017

Devaguptapu, S. V., Hwang, S., Karakalos, S., Zhao, S., Gupta, S., Su, D., Xu, H., & Wu, G. (2017). Morphology Control of Carbon-Free Spinel NiCo2O4 Catalysts for Enhanced Bifunctional Oxygen Reduction and Evolution in Alkaline Media. ACS Applied Materials & Interfaces, 9(51), 44567–44578. https://doi.org/10.1021/acsami.7b16389

Atomically dispersed single iron sites for promoting Pt and Pt3Co fuel cell catalysts: performance and durability improvements

Energy & Environmental Science / Jan 01, 2021

Qiao, Z., Wang, C., Li, C., Zeng, Y., Hwang, S., Li, B., Karakalos, S., Park, J., Kropf, A. J., Wegener, E. C., Gong, Q., Xu, H., Wang, G., Myers, D. J., Xie, J., Spendelow, J. S., & Wu, G. (2021). Atomically dispersed single iron sites for promoting Pt and Pt3Co fuel cell catalysts: performance and durability improvements. Energy & Environmental Science, 14(9), 4948–4960. https://doi.org/10.1039/d1ee01675j

Atomically Dispersed Single Ni Site Catalysts for Nitrogen Reduction toward Electrochemical Ammonia Synthesis Using N2 and H2O

Small Methods / Feb 05, 2020

Mukherjee, S., Yang, X., Shan, W., Samarakoon, W., Karakalos, S., Cullen, D. A., More, K., Wang, M., Feng, Z., Wang, G., & Wu, G. (2020). Atomically Dispersed Single Ni Site Catalysts for Nitrogen Reduction toward Electrochemical Ammonia Synthesis Using N2 and H2O. Small Methods, 4(6). Portico. https://doi.org/10.1002/smtd.201900821

Engineering Atomically Dispersed FeN4 Active Sites for CO2 Electroreduction

Angewandte Chemie International Edition / Nov 12, 2020

Mohd Adli, N., Shan, W., Hwang, S., Samarakoon, W., Karakalos, S., Li, Y., Cullen, D. A., Su, D., Feng, Z., Wang, G., & Wu, G. (2020). Engineering Atomically Dispersed FeN4 Active Sites for CO2 Electroreduction. Angewandte Chemie International Edition, 60(2), 1022–1032. Portico. https://doi.org/10.1002/anie.202012329

Quaternary FeCoNiMn-Based Nanocarbon Electrocatalysts for Bifunctional Oxygen Reduction and Evolution: Promotional Role of Mn Doping in Stabilizing Carbon

ACS Catalysis / Nov 08, 2017

Gupta, S., Zhao, S., Wang, X. X., Hwang, S., Karakalos, S., Devaguptapu, S. V., Mukherjee, S., Su, D., Xu, H., & Wu, G. (2017). Quaternary FeCoNiMn-Based Nanocarbon Electrocatalysts for Bifunctional Oxygen Reduction and Evolution: Promotional Role of Mn Doping in Stabilizing Carbon. ACS Catalysis, 7(12), 8386–8393. https://doi.org/10.1021/acscatal.7b02949

Dynamically Unveiling Metal–Nitrogen Coordination during Thermal Activation to Design High‐Efficient Atomically Dispersed CoN4 Active Sites

Angewandte Chemie / Mar 10, 2021

He, Y., Shi, Q., Shan, W., Li, X., Kropf, A. J., Wegener, E. C., Wright, J., Karakalos, S., Su, D., Cullen, D. A., Wang, G., Myers, D. J., & Wu, G. (2021). Dynamically Unveiling Metal–Nitrogen Coordination during Thermal Activation to Design High‐Efficient Atomically Dispersed CoN4 Active Sites. Angewandte Chemie, 133(17), 9602–9612. Portico. https://doi.org/10.1002/ange.202017288

Metal–organic framework@silica as a stationary phase sorbent for rapid and cost-effective removal of hexavalent chromium

Journal of Materials Chemistry A / Jan 01, 2018

El-Mehalmey, W. A., Ibrahim, A. H., Abugable, A. A., Hassan, M. H., Haikal, R. R., Karakalos, S. G., Zaki, O., & Alkordi, M. H. (2018). Metal–organic framework@silica as a stationary phase sorbent for rapid and cost-effective removal of hexavalent chromium. Journal of Materials Chemistry A, 6(6), 2742–2751. https://doi.org/10.1039/c7ta08281a

Atomically Dispersed Dual‐Metal Site Catalysts for Enhanced CO2 Reduction: Mechanistic Insight into Active Site Structures

Angewandte Chemie / May 09, 2022

Li, Y., Shan, W., Zachman, M. J., Wang, M., Hwang, S., Tabassum, H., Yang, J., Yang, X., Karakalos, S., Feng, Z., Wang, G., & Wu, G. (2022). Atomically Dispersed Dual‐Metal Site Catalysts for Enhanced CO2 Reduction: Mechanistic Insight into Active Site Structures. Angewandte Chemie, 134(28). Portico. https://doi.org/10.1002/ange.202205632

High-performance ammonia oxidation catalysts for anion-exchange membrane direct ammonia fuel cells

Energy & Environmental Science / Jan 01, 2021

Li, Y., Pillai, H. S., Wang, T., Hwang, S., Zhao, Y., Qiao, Z., Mu, Q., Karakalos, S., Chen, M., Yang, J., Su, D., Xin, H., Yan, Y., & Wu, G. (2021). High-performance ammonia oxidation catalysts for anion-exchange membrane direct ammonia fuel cells. Energy & Environmental Science, 14(3), 1449–1460. https://doi.org/10.1039/d0ee03351k

Atomically dispersed single Ni site catalysts for high-efficiency CO2 electroreduction at industrial-level current densities

Energy & Environmental Science / Jan 01, 2022

Li, Y., Adli, N. M., Shan, W., Wang, M., Zachman, M. J., Hwang, S., Tabassum, H., Karakalos, S., Feng, Z., Wang, G., Li, Y. C., & Wu, G. (2022). Atomically dispersed single Ni site catalysts for high-efficiency CO2 electroreduction at industrial-level current densities. Energy & Environmental Science, 15(5), 2108–2119. https://doi.org/10.1039/d2ee00318j

Single-Iron Site Catalysts with Self-Assembled Dual-size Architecture and Hierarchical Porosity for Proton-Exchange Membrane Fuel Cells

Applied Catalysis B: Environmental / Dec 01, 2020

Zhao, X., Yang, X., Wang, M., Hwang, S., Karakalos, S., Chen, M., Qiao, Z., Wang, L., Liu, B., Ma, Q., Cullen, D. A., Su, D., Yang, H., Zang, H.-Y., Feng, Z., & Wu, G. (2020). Single-Iron Site Catalysts with Self-Assembled Dual-size Architecture and Hierarchical Porosity for Proton-Exchange Membrane Fuel Cells. Applied Catalysis B: Environmental, 279, 119400. https://doi.org/10.1016/j.apcatb.2020.119400

Pt alloy nanoparticles decorated on large-size nitrogen-doped graphene tubes for highly stable oxygen-reduction catalysts

Nanoscale / Jan 01, 2018

Chen, M., Hwang, S., Li, J., Karakalos, S., Chen, K., He, Y., Mukherjee, S., Su, D., & Wu, G. (2018). Pt alloy nanoparticles decorated on large-size nitrogen-doped graphene tubes for highly stable oxygen-reduction catalysts. Nanoscale, 10(36), 17318–17326. https://doi.org/10.1039/c8nr05888a

A Ni-loaded, metal–organic framework–graphene composite as a precursor for in situ electrochemical deposition of a highly active and durable water oxidation nanocatalyst

Chemical Communications / Jan 01, 2019

Hassan, M. H., Soliman, A. B., Elmehelmey, W. A., Abugable, A. A., Karakalos, S. G., Elbahri, M., Hassanien, A., & Alkordi, M. H. (2019). A Ni-loaded, metal–organic framework–graphene composite as a precursor for in situ electrochemical deposition of a highly active and durable water oxidation nanocatalyst. Chemical Communications, 55(1), 31–34. https://doi.org/10.1039/c8cc07120a

Stimuli-Modulated Metal Oxidation States in Photochromic MOFs

Journal of the American Chemical Society / Feb 09, 2022

Martin, C. R., Park, K. C., Leith, G. A., Yu, J., Mathur, A., Wilson, G. R., Gange, G. B., Barth, E. L., Ly, R. T., Manley, O. M., Forrester, K. L., Karakalos, S. G., Smith, M. D., Makris, T. M., Vannucci, A. K., Peryshkov, D. V., & Shustova, N. B. (2022). Stimuli-Modulated Metal Oxidation States in Photochromic MOFs. Journal of the American Chemical Society, 144(10), 4457–4468. https://doi.org/10.1021/jacs.1c11984

Boron-hyperdoped silicon for the selective oxidative dehydrogenation of propane to propylene

Chemical Communications / Jan 01, 2020

Chen, J., Rohani, P., Karakalos, S. G., Lance, M. J., Toops, T. J., Swihart, M. T., & Kyriakidou, E. A. (2020). Boron-hyperdoped silicon for the selective oxidative dehydrogenation of propane to propylene. Chemical Communications, 56(68), 9882–9885. https://doi.org/10.1039/d0cc02822c

Hydrogen generation via ammonia decomposition on highly efficient and stable Ru-free catalysts: approaching complete conversion at 450 °C

Energy & Environmental Science / Jan 01, 2022

Tabassum, H., Mukherjee, S., Chen, J., Holiharimanana, D., Karakalos, S., Yang, X., Hwang, S., Zhang, T., Lu, B., Chen, M., Tang, Z., Kyriakidou, E. A., Ge, Q., & Wu, G. (2022). Hydrogen generation via ammonia decomposition on highly efficient and stable Ru-free catalysts: approaching complete conversion at 450 °C. Energy & Environmental Science, 15(10), 4190–4200. https://doi.org/10.1039/d1ee03730g

Hierarchical Corannulene‐Based Materials: Energy Transfer and Solid‐State Photophysics

Angewandte Chemie / Mar 23, 2017

Rice, A. M., Fellows, W. B., Dolgopolova, E. A., Greytak, A. B., Vannucci, A. K., Smith, M. D., Karakalos, S. G., Krause, J. A., Avdoshenko, S. M., Popov, A. A., & Shustova, N. B. (2017). Hierarchical Corannulene‐Based Materials: Energy Transfer and Solid‐State Photophysics. Angewandte Chemie, 129(16), 4596–4600. Portico. https://doi.org/10.1002/ange.201612199

Structure and chemistry of the solid electrolyte interphase (SEI) on a high capacity conversion-based anode: NiO

Journal of Materials Chemistry A / Jan 01, 2021

Ng, B., Faegh, E., Lateef, S., Karakalos, S. G., & Mustain, W. E. (2021). Structure and chemistry of the solid electrolyte interphase (SEI) on a high capacity conversion-based anode: NiO. Journal of Materials Chemistry A, 9(1), 523–537. https://doi.org/10.1039/d0ta09683k

Methane Combustion Over Ni/CexZr1–xO2 Catalysts: Impact of Ceria/Zirconia Ratio

ChemCatChem / Sep 11, 2020

Chen, J., Carlson, B. D., Toops, T. J., Li, Z., Lance, M. J., Karakalos, S. G., Choi, J., & Kyriakidou, E. A. (2020). Methane Combustion Over Ni/CexZr1–xO2 Catalysts: Impact of Ceria/Zirconia Ratio. ChemCatChem, 12(21), 5558–5568. Portico. https://doi.org/10.1002/cctc.202000947

Mechanistic understanding of support effect on the activity and selectivity of indium oxide catalysts for CO2 hydrogenation

Chemical Engineering Journal / Dec 01, 2021

Regalado Vera, C. Y., Manavi, N., Zhou, Z., Wang, L.-C., Diao, W., Karakalos, S., Liu, B., Stowers, K. J., Zhou, M., Luo, H., & Ding, D. (2021). Mechanistic understanding of support effect on the activity and selectivity of indium oxide catalysts for CO2 hydrogenation. Chemical Engineering Journal, 426, 131767. https://doi.org/10.1016/j.cej.2021.131767

Cs3REIIIGe3O9 (RE = Pr, Nd, and SmYb) and Cs8TbIII2TbIVGe9O27: A Rare Example of a Mixed-Valent Tb(III)/Tb(IV) Oxide

Cs3REIIIGe3O9 (RE = Pr, Nd, and SmYb) and Cs8TbIII2TbIVGe9O27: A Rare Example of a Mixed-Valent Tb(III)/Tb(IV) Oxide. (n.d.). American Chemical Society (ACS). https://doi.org/10.1021/acs.inorgchem.9b01033.s001

Tuning the thermal activation atmosphere breaks the activity–stability trade-off of Fe–N–C oxygen reduction fuel cell catalysts

Nature Catalysis / Dec 05, 2023

Zeng, Y., Li, C., Li, B., Liang, J., Zachman, M. J., Cullen, D. A., Hermann, R. P., Alp, E. E., Lavina, B., Karakalos, S., Lucero, M., Zhang, B., Wang, M., Feng, Z., Wang, G., Xie, J., Myers, D. J., Dodelet, J.-P., & Wu, G. (2023). Tuning the thermal activation atmosphere breaks the activity–stability trade-off of Fe–N–C oxygen reduction fuel cell catalysts. Nature Catalysis, 6(12), 1215–1227. https://doi.org/10.1038/s41929-023-01062-8

Hydrogenation of dimethyl oxalate to ethylene glycol over Cu/KIT-6 catalysts

Catalysis Science & Technology / Jan 01, 2021

Yu, X., Burkholder, M., Karakalos, S. G., Tate, G. L., Monnier, J. R., Gupton, B. F., & Williams, C. T. (2021). Hydrogenation of dimethyl oxalate to ethylene glycol over Cu/KIT-6 catalysts. Catalysis Science & Technology, 11(7), 2403–2413. https://doi.org/10.1039/d0cy02334e

Heterometallic multinuclear nodes directing MOF electronic behavior

Chemical Science / Jan 01, 2020

Ejegbavwo, O. A., Berseneva, A. A., Martin, C. R., Leith, G. A., Pandey, S., Brandt, A. J., Park, K. C., Mathur, A., Farzandh, S., Klepov, V. V., Heiser, B. J., Chandrashekhar, M., Karakalos, S. G., Smith, M. D., Phillpot, S. R., Garashchuk, S., Chen, D. A., & Shustova, N. B. (2020). Heterometallic multinuclear nodes directing MOF electronic behavior. Chemical Science, 11(28), 7379–7389. https://doi.org/10.1039/d0sc03053h

Comparative Spectroscopic Study of Aluminum Nitride Grown by MOCVD in H2 and N2 Reaction Environment

Coatings / Jun 29, 2022

Hasan, S., Jewel, M. U., Karakalos, S. G., Gaevski, M., & Ahmad, I. (2022). Comparative Spectroscopic Study of Aluminum Nitride Grown by MOCVD in H2 and N2 Reaction Environment. Coatings, 12(7), 924. https://doi.org/10.3390/coatings12070924

A Metal‐Organic Framework (MOF)‐Based Multifunctional Cargo Vehicle for Reactive‐Gas Delivery and Catalysis

Angewandte Chemie International Edition / Jan 27, 2022

Kittikhunnatham, P., Leith, G. A., Mathur, A., Naglic, J. K., Martin, C. R., Park, K. C., McCullough, K., Jayaweera, H. D. A. C., Corkill, R. E., Lauterbach, J., Karakalos, S. G., Smith, M. D., Garashchuk, S., Chen, D. A., & Shustova, N. B. (2022). A Metal‐Organic Framework (MOF)‐Based Multifunctional Cargo Vehicle for Reactive‐Gas Delivery and Catalysis. Angewandte Chemie International Edition, 61(12). Portico. https://doi.org/10.1002/anie.202113909

Crowded supported metal atoms on catalytically active supports may compromise intrinsic activity: A case study of dual-site Pt/α-MoC catalysts

Applied Catalysis B: Environmental / Jul 01, 2023

Chukwu, E., Molina, L., Rapp, C., Morales, L., Jin, Z., Karakalos, S., Wang, H., Lee, S., Zachman, M. J., & Yang, M. (2023). Crowded supported metal atoms on catalytically active supports may compromise intrinsic activity: A case study of dual-site Pt/α-MoC catalysts. Applied Catalysis B: Environmental, 329, 122532. https://doi.org/10.1016/j.apcatb.2023.122532

Surveying Iron–Organic Framework TAL-1-Derived Materials in Ligandless Heterogeneous Oxidative Catalytic Transformations of Alkylarenes

Synlett / Jul 03, 2019

Ping, K., Alam, M., Käärik, M., Leis, J., Kongi, N., Järving, I., & Starkov, P. (2019). Surveying Iron–Organic Framework TAL-1-Derived Materials in Ligandless Heterogeneous Oxidative Catalytic Transformations of Alkylarenes. Synlett, 30(13), 1536–1540. https://doi.org/10.1055/s-0037-1611877

Mixed-metal hybrid ultramicroporous material (HUM) precursor to graphene-supported tetrataenite as a highly active and durable NPG catalyst for the OER

Dalton Transactions / Jan 01, 2021

Haikal, R. R., Kumar, A., O’Nolan, D., Kumar, N., Karakalos, S. G., Hassanien, A., Zaworotko, M. J., & Alkordi, M. H. (2021). Mixed-metal hybrid ultramicroporous material (HUM) precursor to graphene-supported tetrataenite as a highly active and durable NPG catalyst for the OER. Dalton Transactions, 50(15), 5311–5317. https://doi.org/10.1039/d0dt04118a

Fabrication and Characterization of Cr-Based Schottky Diode on n-Type 4H-SiC

Materials Science Forum / Mar 01, 2009

Koliakoudakis, C., Dontas, J., Karakalos, S., Kayambaki, M., Ladas, S., Konstantinidis, G., Kennou, S., & Zekentes, K. (2009). Fabrication and Characterization of Cr-Based Schottky Diode on n-Type 4H-SiC. Materials Science Forum, 615–617, 651–654. https://doi.org/10.4028/www.scientific.net/msf.615-617.651

Challenging the Activity-Durability Tradeoff of Fe-N-C Fuel Cell Catalysts via Controlling thermal Activation Atmosphere

Nov 29, 2022

Zeng, Y., Li, C., Li, B., Zachman, M., Alp, E., Karakalos, S., Lucero, M., Zhang, B., Wang, M., Feng, Z., Wang, G., Xie, J., Cullen, D., Myers, D., Dodelet, J.-P., & Wu, G. (2022). Challenging the Activity-Durability Tradeoff of Fe-N-C Fuel Cell Catalysts via Controlling thermal Activation Atmosphere. https://doi.org/10.26434/chemrxiv-2022-g4zj8

The preparation of silica supported, dilute limit PdAu alloys via simultaneous strong electrostatic adsorption

Catalysis Science & Technology / Jan 01, 2023

Dong, A., Shakouri, A., Karakalos, S., Blom, D., Williams, C. T., & Regalbuto, J. R. (2023). The preparation of silica supported, dilute limit PdAu alloys via simultaneous strong electrostatic adsorption. Catalysis Science & Technology, 13(10), 3020–3034. https://doi.org/10.1039/d2cy01662a

Stabilization of Ultrasmall Platinum Nanoparticles by Nitrogen-Doped Carbon: Implications for Catalysis and Electrocatalysis

ACS Applied Nano Materials / Aug 17, 2022

Rahman, F. B. A., Tien, H. N., Colon-Mercado, H., Ganesan, P., Elvington, M. C., Gaillard, J. B., Karakalos, S. G., & Regalbuto, J. R. (2022). Stabilization of Ultrasmall Platinum Nanoparticles by Nitrogen-Doped Carbon: Implications for Catalysis and Electrocatalysis. ACS Applied Nano Materials, 5(8), 10292–10302. https://doi.org/10.1021/acsanm.2c01422

High-Platinum-Content Catalysts on Atomically Dispersed and Nitrogen Coordinated Single Manganese Site Carbons for Heavy-Duty Fuel Cells

Journal of The Electrochemical Society / Mar 01, 2022

Chen, M., Li, C., Zhang, B., Zeng, Y., Karakalos, S., Hwang, S., Xie, J., & Wu, G. (2022). High-Platinum-Content Catalysts on Atomically Dispersed and Nitrogen Coordinated Single Manganese Site Carbons for Heavy-Duty Fuel Cells. Journal of The Electrochemical Society, 169(3), 034510. https://doi.org/10.1149/1945-7111/ac58c7

Atomically Dispersed Dual‐Metal Site Catalysts for Enhanced CO2 Reduction: Mechanistic Insight into Active Site Structures

Angewandte Chemie International Edition / May 09, 2022

Li, Y., Shan, W., Zachman, M. J., Wang, M., Hwang, S., Tabassum, H., Yang, J., Yang, X., Karakalos, S., Feng, Z., Wang, G., & Wu, G. (2022). Atomically Dispersed Dual‐Metal Site Catalysts for Enhanced CO2 Reduction: Mechanistic Insight into Active Site Structures. Angewandte Chemie International Edition, 61(28). Portico. https://doi.org/10.1002/anie.202205632

Structure–property investigations in urea tethered iodinated triphenylamines

Physical Chemistry Chemical Physics / Jan 01, 2022

Hossain, M. S., Ahmed, F., Karakalos, S. G., Smith, M. D., Pant, N., Garashchuk, S., Greytak, A. B., Docampo, P., & Shimizu, L. S. (2022). Structure–property investigations in urea tethered iodinated triphenylamines. Physical Chemistry Chemical Physics, 24(31), 18729–18737. https://doi.org/10.1039/d2cp01856j

Effects of Self-Assembly on the Photogeneration of Radical Cations in Halogenated Triphenylamines

The Journal of Physical Chemistry C / Sep 01, 2021

Hossain, M. S., Sindt, A. J., Goodlett, R. L., Shields, D. J., O’Connor, C. J., Antevska, A., Karakalos, S. G., Smith, M. D., Garashchuk, S., Do, T. D., Gudmundsdottir, A. D., & Shimizu, L. S. (2021). Effects of Self-Assembly on the Photogeneration of Radical Cations in Halogenated Triphenylamines. The Journal of Physical Chemistry C, 125(36), 19991–20002. https://doi.org/10.1021/acs.jpcc.1c04933

Promoting Atomically Dispersed MnN4 Sites via Sulfur Doping for Oxygen Reduction: Unveiling Intrinsic Activity and Degradation in Fuel Cells

ACS Nano / Mar 31, 2021

Guo, L., Hwang, S., Li, B., Yang, F., Wang, M., Chen, M., Yang, X., Karakalos, S. G., Cullen, D. A., Feng, Z., Wang, G., Wu, G., & Xu, H. (2021). Promoting Atomically Dispersed MnN4 Sites via Sulfur Doping for Oxygen Reduction: Unveiling Intrinsic Activity and Degradation in Fuel Cells. ACS Nano, 15(4), 6886–6899. https://doi.org/10.1021/acsnano.0c10637

Single Atomic Iron Site Catalysts via Benign Aqueous Synthesis for Durability Improvement in Proton Exchange Membrane Fuel Cells

Journal of The Electrochemical Society / Apr 01, 2021

Chen, M., Cullen, D. A., Karakalos, S., Lu, X., Cui, J., Kropf, A. J., Mistry, H., He, K., Myers, D. J., & Wu, G. (2021). Single Atomic Iron Site Catalysts via Benign Aqueous Synthesis for Durability Improvement in Proton Exchange Membrane Fuel Cells. Journal of The Electrochemical Society, 168(4), 044501. https://doi.org/10.1149/1945-7111/abf014

Stabilization of Catalytic Surfaces through Core–Shell Structures: Ag–Ir/Al2O3 Case Study

ACS Catalysis / Nov 03, 2020

Parizad, M., Wong, A. P., Reber, A. C., Tengco, J. M. M., Karakalos, S. G., Khanna, S. N., Regalbuto, J. R., & Monnier, J. R. (2020). Stabilization of Catalytic Surfaces through Core–Shell Structures: Ag–Ir/Al2O3 Case Study. ACS Catalysis, 10(22), 13352–13363. https://doi.org/10.1021/acscatal.0c03297

Atomically Dispersed MnN4 Catalysts via Environmentally Benign Aqueous Synthesis for Oxygen Reduction: Mechanistic Understanding of Activity and Stability Improvements

ACS Catalysis / Sep 03, 2020

Chen, M., Li, X., Yang, F., Li, B., Stracensky, T., Karakalos, S., Mukerjee, S., Jia, Q., Su, D., Wang, G., Wu, G., & Xu, H. (2020). Atomically Dispersed MnN4 Catalysts via Environmentally Benign Aqueous Synthesis for Oxygen Reduction: Mechanistic Understanding of Activity and Stability Improvements. ACS Catalysis, 10(18), 10523–10534. https://doi.org/10.1021/acscatal.0c02490

Enhanced Performance of Oxygen-Functionalized Multiwalled Carbon Nanotubes as Support for Pt and Pt–Ru Bimetallic Catalysts for Methanol Electrooxidation

ACS Applied Energy Materials / May 19, 2020

Xiong, W., Mehrabadi, B. A. T., Karakolos, S. G., White, R. D., Shakouri, A., Kasak, P., Zaidi, S. J., Weidner, J. W., Regalbuto, J. R., Colon-Mercado, H., & Monnier, J. R. (2020). Enhanced Performance of Oxygen-Functionalized Multiwalled Carbon Nanotubes as Support for Pt and Pt–Ru Bimetallic Catalysts for Methanol Electrooxidation. ACS Applied Energy Materials, 3(6), 5487–5496. https://doi.org/10.1021/acsaem.0c00477

Low-Temperature Lithium Plating/Corrosion Hazard in Lithium-Ion Batteries: Electrode Rippling, Variable States of Charge, and Thermal and Nonthermal Runaway

ACS Applied Energy Materials / Mar 19, 2020

Ng, B., Coman, P. T., Faegh, E., Peng, X., Karakalos, S. G., Jin, X., Mustain, W. E., & White, R. E. (2020). Low-Temperature Lithium Plating/Corrosion Hazard in Lithium-Ion Batteries: Electrode Rippling, Variable States of Charge, and Thermal and Nonthermal Runaway. ACS Applied Energy Materials, 3(4), 3653–3664. https://doi.org/10.1021/acsaem.0c00130

Ternary PtIrNi Catalysts for Efficient Electrochemical Ammonia Oxidation

ACS Catalysis / Mar 03, 2020

Li, Y., Li, X., Pillai, H. S., Lattimer, J., Mohd Adli, N., Karakalos, S., Chen, M., Guo, L., Xu, H., Yang, J., Su, D., Xin, H., & Wu, G. (2020). Ternary PtIrNi Catalysts for Efficient Electrochemical Ammonia Oxidation. ACS Catalysis, 10(7), 3945–3957. https://doi.org/10.1021/acscatal.9b04670

Enhanced hydrogenation of dimethyl oxalate to ethylene glycol over indium promoted Cu/SiO2

Journal of Catalysis / Dec 01, 2019

Yu, X., Vest, T. A., Gleason-Boure, N., Karakalos, S. G., Tate, G. L., Burkholder, M., Monnier, J. R., & Williams, C. T. (2019). Enhanced hydrogenation of dimethyl oxalate to ethylene glycol over indium promoted Cu/SiO2. Journal of Catalysis, 380, 289–296. https://doi.org/10.1016/j.jcat.2019.10.001

Evolution of steady-state material properties during catalysis: Oxidative coupling of methanol over nanoporous Ag0.03Au0.97

Journal of Catalysis / Dec 01, 2019

Zugic, B., van Spronsen, M. A., Heine, C., Montemore, M. M., Li, Y., Zakharov, D. N., Karakalos, S., Lechner, B. A. J., Crumlin, E., Biener, M. M., Frenkel, A. I., Biener, J., Stach, E. A., Salmeron, M. B., Kaxiras, E., Madix, R. J., & Friend, C. M. (2019). Evolution of steady-state material properties during catalysis: Oxidative coupling of methanol over nanoporous Ag0.03Au0.97. Journal of Catalysis, 380, 366–374. https://doi.org/10.1016/j.jcat.2019.08.041

Tuning the Chemical Environment within the UiO-66-NH2 Nanocages for Charge-Dependent Contaminant Uptake and Selectivity

Inorganic Chemistry / Oct 29, 2019

Ibrahim, A. H., El-Mehalmey, W. A., Haikal, R. R., Safy, M. E. A., Amin, M., Shatla, H. R., Karakalos, S. G., & Alkordi, M. H. (2019). Tuning the Chemical Environment within the UiO-66-NH2 Nanocages for Charge-Dependent Contaminant Uptake and Selectivity. Inorganic Chemistry, 58(22), 15078–15087. https://doi.org/10.1021/acs.inorgchem.9b01611

Non-oxidative dehydrogenation of ethane to ethylene over ZSM-5 zeolite supported iron catalysts

Applied Catalysis B: Environmental / Nov 01, 2019

Wang, L.-C., Zhang, Y., Xu, J., Diao, W., Karakalos, S., Liu, B., Song, X., Wu, W., He, T., & Ding, D. (2019). Non-oxidative dehydrogenation of ethane to ethylene over ZSM-5 zeolite supported iron catalysts. Applied Catalysis B: Environmental, 256, 117816. https://doi.org/10.1016/j.apcatb.2019.117816

Adsorptive Desulfurization of 4,6-Dimethyldibenzothiophene on Bimetallic Mesoporous Y Zeolites: Effects of Cu and Ce Composition and Configuration

Industrial & Engineering Chemistry Research / Aug 19, 2019

Lee, K. X., Wang, H., Karakalos, S., Tsilomelekis, G., & Valla, J. A. (2019). Adsorptive Desulfurization of 4,6-Dimethyldibenzothiophene on Bimetallic Mesoporous Y Zeolites: Effects of Cu and Ce Composition and Configuration. Industrial & Engineering Chemistry Research, 58(39), 18301–18312. https://doi.org/10.1021/acs.iecr.9b02346

Thermodynamics and Electronic Properties of Heterometallic Multinuclear Actinide-Containing Metal–Organic Frameworks with “Structural Memory”

Journal of the American Chemical Society / Jun 20, 2019

Ejegbavwo, O. A., Martin, C. R., Olorunfemi, O. A., Leith, G. A., Ly, R. T., Rice, A. M., Dolgopolova, E. A., Smith, M. D., Karakalos, S. G., Birkner, N., Powell, B. A., Pandey, S., Koch, R. J., Misture, S. T., Loye, H.-C. zur, Phillpot, S. R., Brinkman, K. S., & Shustova, N. B. (2019). Thermodynamics and Electronic Properties of Heterometallic Multinuclear Actinide-Containing Metal–Organic Frameworks with “Structural Memory.” Journal of the American Chemical Society, 141(29), 11628–11640. https://doi.org/10.1021/jacs.9b04737

Cs3REIIIGe3O9 (RE = Pr, Nd, and Sm–Yb) and Cs8TbIII2TbIVGe9O27: A Rare Example of a Mixed-Valent Tb(III)/Tb(IV) Oxide

Inorganic Chemistry / Jun 18, 2019

{"status":"ok","message-type":"journal","message-version":"1.0.0","message":{"last-status-check-time":1711137099280,"counts":{"current-dois":286,"backfile-dois":627,"total-dois":913},"breakdowns":{"dois-by-issued-year":[[2023,133],[2022,108],[2016,65],[2017,62],[2019,56],[2011,52],[2018,48],[2021,47],[2024,45],[2020,39],[2010,36],[2014,34],[2007,34],[2013,32],[2012,32],[2009,32],[2015,31],[2008,27]]},"publisher":"American Institute of Mathematical Sciences","coverage":{"affiliations-current":0.2377622377622378,"similarity-checking-current":0.1223776223776224,"descriptions-current":0.0,"ror-ids-current":0.0,"funders-backfile":0.0,"licenses-backfile":0.0,"funders-current":0.0,"affiliations-backfile":0.0,"resource-links-backfile":0.0,"orcids-backfile":0.0,"update-policies-current":0.0,"ror-ids-backfile":0.0,"orcids-current":0.0,"similarity-checking-backfile":0.9027113237639554,"references-backfile":0.532695374800638,"descriptions-backfile":0.0,"award-numbers-backfile":0.0,"update-policies-backfile":0.0,"licenses-current":0.0,"award-numbers-current":0.0,"abstracts-backfile":0.02073365231259968,"resource-links-current":0.0,"abstracts-current":0.2237762237762238,"references-current":0.451048951048951},"title":"Advances in Mathematics of Communications","subjects":[{"ASJC":2604,"name":"Applied Mathematics"},{"ASJC":2607,"name":"Discrete Mathematics and Combinatorics"},{"ASJC":1705,"name":"Computer Networks and Communications"},{"ASJC":2602,"name":"Algebra and Number Theory"}],"coverage-type":{"all":{"last-status-check-time":1711137099280,"affiliations":0.07439824945295405,"abstracts":0.08424507658643327,"orcids":0.0,"licenses":0.0,"references":0.5065645514223195,"funders":0.0,"similarity-checking":0.6586433260393872,"award-numbers":0.0,"ror-ids":0.0,"update-policies":0.0,"resource-links":0.0,"descriptions":0.0},"backfile":{"last-status-check-time":1711137099280,"affiliations":0.0,"abstracts":0.02073365231259968,"orcids":0.0,"licenses":0.0,"references":0.532695374800638,"funders":0.0,"similarity-checking":0.9027113237639554,"award-numbers":0.0,"ror-ids":0.0,"update-policies":0.0,"resource-links":0.0,"descriptions":0.0},"current":{"last-status-check-time":1711137099280,"affiliations":0.2377622377622378,"abstracts":0.2237762237762238,"orcids":0.0,"licenses":0.0,"references":0.451048951048951,"funders":0.0,"similarity-checking":0.1223776223776224,"award-numbers":0.0,"ror-ids":0.0,"update-policies":0.0,"resource-links":0.0,"descriptions":0.0}},"flags":{"deposits-abstracts-current":true,"deposits-orcids-current":false,"deposits":true,"deposits-affiliations-backfile":false,"deposits-update-policies-backfile":false,"deposits-similarity-checking-backfile":true,"deposits-award-numbers-current":false,"deposits-resource-links-current":false,"deposits-ror-ids-current":false,"deposits-articles":true,"deposits-affiliations-current":true,"deposits-funders-current":false,"deposits-references-backfile":true,"deposits-ror-ids-backfile":false,"deposits-abstracts-backfile":true,"deposits-licenses-backfile":false,"deposits-award-numbers-backfile":false,"deposits-descriptions-current":false,"deposits-references-current":true,"deposits-resource-links-backfile":false,"deposits-descriptions-backfile":false,"deposits-orcids-backfile":false,"deposits-funders-backfile":false,"deposits-update-policies-current":false,"deposits-similarity-checking-current":true,"deposits-licenses-current":false},"ISSN":["1930-5346","1930-5338"],"issn-type":[{"type":"print","value":"1930-5346"},{"type":"electronic","value":"1930-5338"}]}}

Connecting Wires: Photoinduced Electronic Structure Modulation in Metal–Organic Frameworks

Journal of the American Chemical Society / Mar 06, 2019

Dolgopolova, E. A., Galitskiy, V. A., Martin, C. R., Gregory, H. N., Yarbrough, B. J., Rice, A. M., Berseneva, A. A., Ejegbavwo, O. A., Stephenson, K. S., Kittikhunnatham, P., Karakalos, S. G., Smith, M. D., Greytak, A. B., Garashchuk, S., & Shustova, N. B. (2019). Connecting Wires: Photoinduced Electronic Structure Modulation in Metal–Organic Frameworks. Journal of the American Chemical Society, 141(13), 5350–5358. https://doi.org/10.1021/jacs.8b13853

Flux crystal growth of uranium(v) containing oxyfluoride perovskites

Inorganic Chemistry Frontiers / Jan 01, 2019

Juillerat, C. A., Kocevski, V., Morrison, G., Karakalos, S. G., Patil, D., Misture, S. T., Besmann, T. M., & zur Loye, H.-C. (2019). Flux crystal growth of uranium(<scp>v</scp>) containing oxyfluoride perovskites. Inorganic Chemistry Frontiers, 6(11), 3203–3214. https://doi.org/10.1039/c9qi00537d

Large-diameter and heteroatom-doped graphene nanotubes decorated with transition metals as carbon hosts for lithium–sulfur batteries

Journal of Materials Chemistry A / Jan 01, 2019

Ogoke, O., Hwang, S., Hultman, B., Chen, M., Karakalos, S., He, Y., Ramsey, A., Su, D., Alexandridis, P., & Wu, G. (2019). Large-diameter and heteroatom-doped graphene nanotubes decorated with transition metals as carbon hosts for lithium–sulfur batteries. Journal of Materials Chemistry A, 7(21), 13389–13399. https://doi.org/10.1039/c9ta02889g

Crossing the great divide between single-crystal reactivity and actual catalyst selectivity with pressure transients

Nature Catalysis / Nov 05, 2018

Reece, C., Redekop, E. A., Karakalos, S., Friend, C. M., & Madix, Robert. J. (2018). Crossing the great divide between single-crystal reactivity and actual catalyst selectivity with pressure transients. Nature Catalysis, 1(11), 852–859. https://doi.org/10.1038/s41929-018-0167-5

Ambient Oxidation of Ultrasmall Platinum Nanoparticles on Microporous Carbon Catalyst Supports

ACS Applied Nano Materials / Sep 13, 2018

Banerjee, R., Chen, D. A., Karakalos, S., Piedboeuf, M.-L. C., Job, N., & Regalbuto, J. R. (2018). Ambient Oxidation of Ultrasmall Platinum Nanoparticles on Microporous Carbon Catalyst Supports. ACS Applied Nano Materials, 1(10), 5876–5884. https://doi.org/10.1021/acsanm.8b01548

Stack the Bowls: Tailoring the Electronic Structure of Corannulene‐Integrated Crystalline Materials

Angewandte Chemie International Edition / Jul 30, 2018

Rice, A. M., Dolgopolova, E. A., Yarbrough, B. J., Leith, G. A., Martin, C. R., Stephenson, K. S., Heugh, R. A., Brandt, A. J., Chen, D. A., Karakalos, S. G., Smith, M. D., Hatzell, K. B., Pellechia, P. J., Garashchuk, S., & Shustova, N. B. (2018). Stack the Bowls: Tailoring the Electronic Structure of Corannulene‐Integrated Crystalline Materials. Angewandte Chemie International Edition, 57(35), 11310–11315. Portico. https://doi.org/10.1002/anie.201806202

Stack the Bowls: Tailoring the Electronic Structure of Corannulene‐Integrated Crystalline Materials

Angewandte Chemie / Jul 30, 2018

Rice, A. M., Dolgopolova, E. A., Yarbrough, B. J., Leith, G. A., Martin, C. R., Stephenson, K. S., Heugh, R. A., Brandt, A. J., Chen, D. A., Karakalos, S. G., Smith, M. D., Hatzell, K. B., Pellechia, P. J., Garashchuk, S., & Shustova, N. B. (2018). Stack the Bowls: Tailoring the Electronic Structure of Corannulene‐Integrated Crystalline Materials. Angewandte Chemie, 130(35), 11480–11485. Portico. https://doi.org/10.1002/ange.201806202

Aqueous-Phase Hydrogenation of Succinic Acid Using Bimetallic Ir–Re/C Catalysts Prepared by Strong Electrostatic Adsorption

ACS Catalysis / Jun 07, 2018

Keels, J. M., Chen, X., Karakalos, S., Liang, C., Monnier, J. R., & Regalbuto, J. R. (2018). Aqueous-Phase Hydrogenation of Succinic Acid Using Bimetallic Ir–Re/C Catalysts Prepared by Strong Electrostatic Adsorption. ACS Catalysis, 8(7), 6486–6494. https://doi.org/10.1021/acscatal.8b01006

Na2(UO2)(BO3): An All-Uranium(V) Borate Synthesized under Mild Hydrothermal Conditions

Inorganic Chemistry / Apr 02, 2018

Pace, K. A., Kocevski, V., Karakalos, S. G., Morrison, G., Besmann, T., & zur Loye, H.-C. (2018). Na2(UO2)(BO3): An All-Uranium(V) Borate Synthesized under Mild Hydrothermal Conditions. Inorganic Chemistry, 57(8), 4244–4247. https://doi.org/10.1021/acs.inorgchem.8b00487

Improved Capacity Retention of Metal Oxide Anodes in Li‐Ion Batteries: Increasing Intraparticle Electronic Conductivity through Na Inclusion in Mn3O4

ChemElectroChem / May 23, 2018

Palmieri, A., Yazdani, S., Kashfi‐Sadabad, R., Karakalos, S. G., Ng, B., Oliveira, A., Peng, X., Pettes, M. T., & Mustain, W. E. (2018). Improved Capacity Retention of Metal Oxide Anodes in Li‐Ion Batteries: Increasing Intraparticle Electronic Conductivity through Na Inclusion in Mn3O4. ChemElectroChem, 5(15), 2059–2063. Portico. https://doi.org/10.1002/celc.201800358

Liquid phase hydrodeoxygenation of anisole, 4-ethylphenol and benzofuran using Ni, Ru and Pd supported on USY zeolite

Applied Catalysis A: General / Jun 01, 2018

Gamliel, D. P., Karakalos, S., & Valla, J. A. (2018). Liquid phase hydrodeoxygenation of anisole, 4-ethylphenol and benzofuran using Ni, Ru and Pd supported on USY zeolite. Applied Catalysis A: General, 559, 20–29. https://doi.org/10.1016/j.apcata.2018.04.004

Cobalt Doping as a Pathway To Stabilize the Solid-State Conversion Chemistry of Manganese Oxide Anodes in Li-Ion Batteries

The Journal of Physical Chemistry C / Mar 16, 2018

Palmieri, A., Yazdani, S., Kashfi-Sadabad, R., Karakalos, S. G., Pettes, M. T., & Mustain, W. E. (2018). Cobalt Doping as a Pathway To Stabilize the Solid-State Conversion Chemistry of Manganese Oxide Anodes in Li-Ion Batteries. The Journal of Physical Chemistry C, 122(13), 7120–7127. https://doi.org/10.1021/acs.jpcc.8b00403

Monte Carlo Simulations of the Uptake of Chiral Compounds on Solid Surfaces

The Journal of Physical Chemistry B / Apr 28, 2017

Karakalos, S., & Zaera, F. (2017). Monte Carlo Simulations of the Uptake of Chiral Compounds on Solid Surfaces. The Journal of Physical Chemistry B, 122(2), 444–454. https://doi.org/10.1021/acs.jpcb.7b02230

Understanding Uptake of Pt Precursors During Strong Electrostatic Adsorption on Single-Crystal Carbon Surfaces

Topics in Catalysis / Nov 10, 2017

Seuser, G. S., Banerjee, R., Metavarayuth, K., Brandt, A. J., Maddumapatabandi, T. D., Karakalos, S., Lin, Y., Regalbuto, J. R., & Chen, D. A. (2017). Understanding Uptake of Pt Precursors During Strong Electrostatic Adsorption on Single-Crystal Carbon Surfaces. Topics in Catalysis, 61(5–6), 379–388. https://doi.org/10.1007/s11244-017-0872-3

Engineering reduced graphene oxides with enhanced electrochemical properties through multiple-step reductions

Electrochimica Acta / Dec 01, 2017

Wei, M., Qiao, L., Zhang, H., Karakalos, S., Ma, K., Fu, Z., Swihart, M. T., & Wu, G. (2017). Engineering reduced graphene oxides with enhanced electrochemical properties through multiple-step reductions. Electrochimica Acta, 258, 735–743. https://doi.org/10.1016/j.electacta.2017.11.120

Multifaceted Modularity: A Key for Stepwise Building of Hierarchical Complexity in Actinide Metal–Organic Frameworks

Journal of the American Chemical Society / Nov 08, 2017

Dolgopolova, E. A., Ejegbavwo, O. A., Martin, C. R., Smith, M. D., Setyawan, W., Karakalos, S. G., Henager, C. H., zur Loye, H.-C., & Shustova, N. B. (2017). Multifaceted Modularity: A Key for Stepwise Building of Hierarchical Complexity in Actinide Metal–Organic Frameworks. Journal of the American Chemical Society, 139(46), 16852–16861. https://doi.org/10.1021/jacs.7b09496

Pt Immobilization within a Tailored Porous-Organic Polymer–Graphene Composite: Opportunities in the Hydrogen Evolving Reaction

ACS Catalysis / Oct 24, 2017

Soliman, A. B., Hassan, M. H., Huan, T. N., Abugable, A. A., Elmehalmey, W. A., Karakalos, S. G., Tsotsalas, M., Heinle, M., Elbahri, M., Fontecave, M., & Alkordi, M. H. (2017). Pt Immobilization within a Tailored Porous-Organic Polymer–Graphene Composite: Opportunities in the Hydrogen Evolving Reaction. ACS Catalysis, 7(11), 7847–7854. https://doi.org/10.1021/acscatal.7b02246

Catalytic Descriptors for the Design of Ziegler–Natta Catalysts Revealed by the Investigation of the Cl–Ti(0001) Interaction by Density of States Calculations

The Journal of Physical Chemistry C / Sep 20, 2017

Symianakis, E., Karakalos, S., & Ladas, S. (2017). Catalytic Descriptors for the Design of Ziegler–Natta Catalysts Revealed by the Investigation of the Cl–Ti(0001) Interaction by Density of States Calculations. The Journal of Physical Chemistry C, 121(38), 20871–20876. https://doi.org/10.1021/acs.jpcc.7b06980

Structural Differentiation of the Reactivity of Alcohols with Active Oxygen on Au(110)

Topics in Catalysis / Sep 25, 2017

Hiebel, F., Karakalos, S., Xu, Y., Friend, C. M., & Madix, R. J. (2017). Structural Differentiation of the Reactivity of Alcohols with Active Oxygen on Au(110). Topics in Catalysis, 61(5–6), 299–307. https://doi.org/10.1007/s11244-017-0855-4

Tailoring the Oxygen Reduction Activity of Hemoglobin through Immobilization within Microporous Organic Polymer–Graphene Composite

ACS Applied Materials & Interfaces / Jun 27, 2017

Soliman, A. B., Haikal, R. R., Abugable, A. A., Hassan, M. H., Karakalos, S. G., Pellechia, P. J., Hassan, H. H., Yacoub, M. H., & Alkordi, M. H. (2017). Tailoring the Oxygen Reduction Activity of Hemoglobin through Immobilization within Microporous Organic Polymer–Graphene Composite. ACS Applied Materials &amp; Interfaces, 9(33), 27918–27926. https://doi.org/10.1021/acsami.7b06146

Cover Picture: Post‐Synthetic Immobilization of Ni Ions in a Porous‐Organic Polymer‐Graphene Composite for Non‐Noble Metal Electrocatalytic Water Oxidation (ChemCatChem 15/2017)

ChemCatChem / Aug 09, 2017

Soliman, A. B., Hassan, M. H., Abugable, A. A., Karakalos, S. G., & Alkordi, M. H. (2017). Cover Picture: Post‐Synthetic Immobilization of Ni Ions in a Porous‐Organic Polymer‐Graphene Composite for Non‐Noble Metal Electrocatalytic Water Oxidation (ChemCatChem 15/2017). ChemCatChem, 9(15), 2892–2892. Portico. https://doi.org/10.1002/cctc.201701174

Post‐Synthetic Immobilization of Ni Ions in a Porous‐Organic Polymer‐Graphene Composite for Non‐Noble Metal Electrocatalytic Water Oxidation

ChemCatChem / Jul 21, 2017

Soliman, A. B., Hassan, M. H., Abugable, A. A., Karakalos, S. G., & Alkordi, M. H. (2017). Post‐Synthetic Immobilization of Ni Ions in a Porous‐Organic Polymer‐Graphene Composite for Non‐Noble Metal Electrocatalytic Water Oxidation. ChemCatChem, 9(15), 2946–2951. Portico. https://doi.org/10.1002/cctc.201700601

3D polymer hydrogel for high-performance atomic iron-rich catalysts for oxygen reduction in acidic media

Applied Catalysis B: Environmental / Dec 01, 2017

Qiao, Z., Zhang, H., Karakalos, S., Hwang, S., Xue, J., Chen, M., Su, D., & Wu, G. (2017). 3D polymer hydrogel for high-performance atomic iron-rich catalysts for oxygen reduction in acidic media. Applied Catalysis B: Environmental, 219, 629–639. https://doi.org/10.1016/j.apcatb.2017.08.008

Hierarchical Corannulene‐Based Materials: Energy Transfer and Solid‐State Photophysics

Angewandte Chemie International Edition / Mar 23, 2017

Rice, A. M., Fellows, W. B., Dolgopolova, E. A., Greytak, A. B., Vannucci, A. K., Smith, M. D., Karakalos, S. G., Krause, J. A., Avdoshenko, S. M., Popov, A. A., & Shustova, N. B. (2017). Hierarchical Corannulene‐Based Materials: Energy Transfer and Solid‐State Photophysics. Angewandte Chemie International Edition, 56(16), 4525–4529. Portico. https://doi.org/10.1002/anie.201612199

Pillars of assembled pyridyl bis-urea macrocycles: a robust synthon to organize diiodotetrafluorobenzenes

CrystEngComm / Jan 01, 2017

Som, B., Salpage, S. R., Son, J., Gu, B., Karakalos, S. G., Smith, M. D., & Shimizu, L. S. (2017). Pillars of assembled pyridyl bis-urea macrocycles: a robust synthon to organize diiodotetrafluorobenzenes. CrystEngComm, 19(3), 484–491. https://doi.org/10.1039/c6ce02392d

Preferentially Oriented Ag Nanocrystals with Extremely High Activity and Faradaic Efficiency for CO2 Electrochemical Reduction to CO

ACS Applied Materials & Interfaces / Jan 03, 2018

Peng, X., Karakalos, S. G., & Mustain, W. E. (2018). Preferentially Oriented Ag Nanocrystals with Extremely High Activity and Faradaic Efficiency for CO2 Electrochemical Reduction to CO. ACS Applied Materials &amp; Interfaces, 10(2), 1734–1742. https://doi.org/10.1021/acsami.7b16164

Synergism of carbon nanotubes and porous-organic polymers (POPs) in CO2 fixation: One-pot approach for bottom-up assembly of tunable heterogeneous catalyst

Applied Catalysis B: Environmental / Jun 01, 2017

Haikal, R. R., Soliman, A. B., Amin, M., Karakalos, S. G., Hassan, Y. S., Elmansi, A. M., Hafez, I. H., Berber, M. R., Hassanien, A., & Alkordi, M. H. (2017). Synergism of carbon nanotubes and porous-organic polymers (POPs) in CO2 fixation: One-pot approach for bottom-up assembly of tunable heterogeneous catalyst. Applied Catalysis B: Environmental, 207, 347–357. https://doi.org/10.1016/j.apcatb.2017.02.009

Water facilitates oxygen migration on gold surfaces

Physical Chemistry Chemical Physics / Jan 01, 2018

Xu, F., Fampiou, I., O’Connor, C. R., Karakalos, S., Hiebel, F., Kaxiras, E., Madix, R. J., & Friend, C. M. (2018). Water facilitates oxygen migration on gold surfaces. Physical Chemistry Chemical Physics, 20(4), 2196–2204. https://doi.org/10.1039/c7cp06451a

Catalytic production of methyl acrylates by gold-mediated cross coupling of unsaturated aldehydes with methanol

Surface Science / Oct 01, 2016

Karakalos, S., Zugic, B., Stowers, K. J., Biener, M. M., Biener, J., Friend, C. M., & Madix, R. J. (2016). Catalytic production of methyl acrylates by gold-mediated cross coupling of unsaturated aldehydes with methanol. Surface Science, 652, 58–66. https://doi.org/10.1016/j.susc.2016.03.017

Changes in the Enantiomeric Composition of Chiral Mixtures Upon Adsorption on a Non‐Chiral Surface

Angewandte Chemie / Apr 13, 2016

Karakalos, S., Hong, J., & Zaera, F. (2016). Changes in the Enantiomeric Composition of Chiral Mixtures Upon Adsorption on a Non‐Chiral Surface. Angewandte Chemie, 128(21), 6333–6336. Portico. https://doi.org/10.1002/ange.201601549

Active sites for methanol partial oxidation on nanoporous gold catalysts

Journal of Catalysis / Dec 01, 2016

Wang, L.-C., Personick, M. L., Karakalos, S., Fushimi, R., Friend, C. M., & Madix, R. J. (2016). Active sites for methanol partial oxidation on nanoporous gold catalysts. Journal of Catalysis, 344, 778–783. https://doi.org/10.1016/j.jcat.2016.08.012

Changes in the Enantiomeric Composition of Chiral Mixtures Upon Adsorption on a Non‐Chiral Surface

Angewandte Chemie International Edition / Apr 13, 2016

Karakalos, S., Hong, J., & Zaera, F. (2016). Changes in the Enantiomeric Composition of Chiral Mixtures Upon Adsorption on a Non‐Chiral Surface. Angewandte Chemie International Edition, 55(21), 6225–6228. Portico. https://doi.org/10.1002/anie.201601549

Continuous Catalytic Production of Methyl Acrylates from Unsaturated Alcohols by Gold: The Strong Effect of C═C Unsaturation on Reaction Selectivity

ACS Catalysis / Feb 17, 2016

Zugic, B., Karakalos, S., Stowers, K. J., Biener, M. M., Biener, J., Madix, R. J., & Friend, C. M. (2016). Continuous Catalytic Production of Methyl Acrylates from Unsaturated Alcohols by Gold: The Strong Effect of C═C Unsaturation on Reaction Selectivity. ACS Catalysis, 6(3), 1833–1839. https://doi.org/10.1021/acscatal.5b02902

Noncovalent Bonding Controls Selectivity in Heterogeneous Catalysis: Coupling Reactions on Gold

Journal of the American Chemical Society / Nov 11, 2016

Karakalos, S., Xu, Y., Cheenicode Kabeer, F., Chen, W., Rodríguez-Reyes, J. C. F., Tkatchenko, A., Kaxiras, E., Madix, R. J., & Friend, C. M. (2016). Noncovalent Bonding Controls Selectivity in Heterogeneous Catalysis: Coupling Reactions on Gold. Journal of the American Chemical Society, 138(46), 15243–15250. https://doi.org/10.1021/jacs.6b09450

Amplification of Enantioselectivity on Solid Surfaces Using Nonchiral Adsorbates

The Journal of Physical Chemistry C / Jun 04, 2015

Karakalos, S., & Zaera, F. (2015). Amplification of Enantioselectivity on Solid Surfaces Using Nonchiral Adsorbates. The Journal of Physical Chemistry C, 119(24), 13785–13790. https://doi.org/10.1021/acs.jpcc.5b04452

Dependence of the adsorption of chiral compounds on their enantiomeric composition

Surface Science / Nov 01, 2014

Gordon, A. D., Karakalos, S., & Zaera, F. (2014). Dependence of the adsorption of chiral compounds on their enantiomeric composition. Surface Science, 629, 3–10. https://doi.org/10.1016/j.susc.2014.02.003

Enantiospecific Kinetics in Surface Adsorption: Propylene Oxide on Pt(111) Surfaces

The Journal of Physical Chemistry C / Aug 29, 2013

Karakalos, S., Lawton, T. J., Lucci, F. R., Sykes, E. C. H., & Zaera, F. (2013). Enantiospecific Kinetics in Surface Adsorption: Propylene Oxide on Pt(111) Surfaces. The Journal of Physical Chemistry C, 117(36), 18588–18594. https://doi.org/10.1021/jp406495w

Investigation of the Ti/MgCl2 interface on a Si(111) 7 × 7 substrate

The Journal of Chemical Physics / Jun 12, 2012

Karakalos, S., Skala, T., Plekan, O., Ladas, S., Prince, K., Matolin, V., Chab, V., & Siokou, A. (2012). Investigation of the Ti/MgCl2 interface on a Si(111) 7 × 7 substrate. The Journal of Chemical Physics, 136(22). https://doi.org/10.1063/1.4727760

The interfacial properties of MgCl2 thin films grown on Ti(0001)

The Journal of Chemical Physics / Aug 16, 2010

Karakalos, S., Siokou, A., Sutara, F., Skala, T., Vitaliy, F., Ladas, S., Prince, K., Matolin, V., & Chab, V. (2010). The interfacial properties of MgCl2 thin films grown on Ti(0001). The Journal of Chemical Physics, 133(7). https://doi.org/10.1063/1.3473933

The interfacial properties of MgCl2 films grown on a flat SiO2/Si substrate. An XPS and ISS study

Applied Surface Science / Aug 01, 2009

Karakalos, S., Siokou, A., & Ladas, S. (2009). The interfacial properties of MgCl2 films grown on a flat SiO2/Si substrate. An XPS and ISS study. Applied Surface Science, 255(21), 8941–8946. https://doi.org/10.1016/j.apsusc.2009.06.105

Cr/4H‐SiC Schottky contacts investigated by electrical and photoelectron spectroscopy techniques

physica status solidi (a) / Oct 29, 2008

Koliakoudakis, C., Dontas, J., Karakalos, S., Kayambaki, M., Ladas, S., Konstantinidis, G., Zekentes, K., & Kennou, S. (2008). Cr/4H‐SiC Schottky contacts investigated by electrical and photoelectron spectroscopy techniques. Physica Status Solidi (a), 205(11), 2536–2540. Portico. https://doi.org/10.1002/pssa.200780212

Study of the early stages of Cr/4H‐SiC(11‐20) interface formation and its behavior at high temperatures

physica status solidi c / Oct 29, 2008

Dontas, I., Karakalos, S., Ladas, S., & Kennou, S. (2008). Study of the early stages of Cr/4H‐SiC(11‐20) interface formation and its behavior at high temperatures. Physica Status Solidi c, 5(12), 3744–3747. Portico. https://doi.org/10.1002/pssc.200780180

Surface alloying in the Sn/Ni(111) system studied by synchrotron radiation photoelectron valence band spectroscopy and ab-initio density of states calculations

Thin Solid Films / Mar 01, 2008

Karakalos, S., Ladas, S., Janecek, P., Sutara, F., Nehasil, V., Tsud, N., Prince, K., Matolin, V., Chab, V., Papanicolaou, N. I., Dianat, A., & Gross, A. (2008). Surface alloying in the Sn/Ni(111) system studied by synchrotron radiation photoelectron valence band spectroscopy and ab-initio density of states calculations. Thin Solid Films, 516(10), 2962–2965. https://doi.org/10.1016/j.tsf.2007.10.101

The interfacial properties of MgCl2 thin films grown on Si(111)7×7

The Journal of Chemical Physics / Mar 13, 2008

Karakalos, S., Siokou, A., Dracopoulos, V., Sutara, F., Skala, T., Skoda, M., Ladas, S., Prince, K., Matolin, V., & Chab, V. (2008). The interfacial properties of MgCl2 thin films grown on Si(111)7×7. The Journal of Chemical Physics, 128(10). https://doi.org/10.1063/1.2888926

Study of the early stages of Cr/6H-SiC(0001) interface formation

Applied Surface Science / May 01, 2006

Dontas, I., Karakalos, S., Ladas, S., & Kennou, S. (2006). Study of the early stages of Cr/6H-SiC(0001) interface formation. Applied Surface Science, 252(15), 5312–5315. https://doi.org/10.1016/j.apsusc.2005.12.066

The transition from the adsorbed state to a surface alloy in the Sn/Ni(111) system

Surface Science / Sep 01, 2006

Karakalos, S., Kennou, S., Ladas, S., Janecek, P., Sutara, F., Nehasil, V., Fabik, S., Tsud, N., Prince, K., Matolin, V., & Chab, V. (2006). The transition from the adsorbed state to a surface alloy in the Sn/Ni(111) system. Surface Science, 600(18), 4067–4071. https://doi.org/10.1016/j.susc.2006.01.123

Education

University of Patras School of Engineering

PhD, Chemical Engineering / February, 2009

Patras

University of Patras School of Engineering

MSc, Chemical Engineering / September, 2005

Patras

University of Ioannina School of Sciences and Technology

B.S. , Physics / September, 2003

Ioannina

Experience

Institute for Carbon Management, UCLA

Assistant Director / April, 2022September, 2022

University of South Carolina

Research Assistant Professor / July, 2016March, 2022

Harvard University

Post-doctoral Associate / January, 2015June, 2016

University of California Riverside

Post-doctoral Employee / June, 2011December, 2014

FORTH/ICE-HT

Post-doctoral Researcher / February, 2010March, 2011

Fralock

Sr Materials Engineer / October, 2022Present

Phasma Labs Inc.

Lead Scientist / MayPresent

Join Stavros on NotedSource!
Join Now

At NotedSource, we believe that professors, post-docs, scientists and other researchers have deep, untapped knowledge and expertise that can be leveraged to drive innovation within companies. NotedSource is committed to bridging the gap between academia and industry by providing a platform for collaboration with industry and networking with other researchers.

For industry, NotedSource identifies the right academic experts in 24 hours to help organizations build and grow. With a platform of thousands of knowledgeable PhDs, scientists, and industry experts, NotedSource makes connecting and collaborating easy.

For academic researchers such as professors, post-docs, and Ph.D.s, NotedSource provides tools to discover and connect to your colleagues with messaging and news feeds, in addition to the opportunity to be paid for your collaboration with vetted partners.

Expert Institutions
NotedSource has experts from Stanford University
Expert institutions using NotedSource include Oxfort University
Experts from McGill have used NotedSource to share their expertise
University of Chicago experts have used NotedSource
MIT researchers have used NotedSource
Proudly trusted by
Microsoft uses NotedSource for academic partnerships
Johnson & Johnson academic research projects on NotedSource
ProQuest (Clarivate) uses NotedSource as their industry academia platform
Slamom consulting engages academics for research collaboration on NotedSource
Omnicom and OMG find academics on notedsource
Unilever research project have used NotedSource to engage academic experts