Stavros Karakalos
Surface Scientist with extensive experience in materials characterization
Research Expertise
About
Publications
Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation
Journal of the American Chemical Society / Sep 26, 2017
Zhang, H., Hwang, S., Wang, M., Feng, Z., Karakalos, S., Luo, L., Qiao, Z., Xie, X., Wang, C., Su, D., Shao, Y., & Wu, G. (2017). Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation. Journal of the American Chemical Society, 139(40), 14143–14149. https://doi.org/10.1021/jacs.7b06514
Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells
Nature Catalysis / Oct 29, 2018
Li, J., Chen, M., Cullen, D. A., Hwang, S., Wang, M., Li, B., Liu, K., Karakalos, S., Lucero, M., Zhang, H., Lei, C., Xu, H., Sterbinsky, G. E., Feng, Z., Su, D., More, K. L., Wang, G., Wang, Z., & Wu, G. (2018). Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nature Catalysis, 1(12), 935–945. https://doi.org/10.1038/s41929-018-0164-8
Highly active atomically dispersed CoN4 fuel cell cathode catalysts derived from surfactant-assisted MOFs: carbon-shell confinement strategy
Energy & Environmental Science / Jan 01, 2019
He, Y., Hwang, S., Cullen, D. A., Uddin, M. A., Langhorst, L., Li, B., Karakalos, S., Kropf, A. J., Wegener, E. C., Sokolowski, J., Chen, M., Myers, D., Su, D., More, K. L., Wang, G., Litster, S., & Wu, G. (2019). Highly active atomically dispersed CoN4 fuel cell cathode catalysts derived from surfactant-assisted MOFs: carbon-shell confinement strategy. Energy & Environmental Science, 12(1), 250–260. https://doi.org/10.1039/c8ee02694g
Metal-organic framework-derived nitrogen-doped highly disordered carbon for electrochemical ammonia synthesis using N2 and H2O in alkaline electrolytes
Nano Energy / Jun 01, 2018
Mukherjee, S., Cullen, D. A., Karakalos, S., Liu, K., Zhang, H., Zhao, S., Xu, H., More, K. L., Wang, G., & Wu, G. (2018). Metal-organic framework-derived nitrogen-doped highly disordered carbon for electrochemical ammonia synthesis using N2 and H2O in alkaline electrolytes. Nano Energy, 48, 217–226. https://doi.org/10.1016/j.nanoen.2018.03.059
Thermally Driven Structure and Performance Evolution of Atomically Dispersed FeN4 Sites for Oxygen Reduction
Angewandte Chemie International Edition / Nov 11, 2019
Li, J., Zhang, H., Samarakoon, W., Shan, W., Cullen, D. A., Karakalos, S., Chen, M., Gu, D., More, K. L., Wang, G., Feng, Z., Wang, Z., & Wu, G. (2019). Thermally Driven Structure and Performance Evolution of Atomically Dispersed FeN4 Sites for Oxygen Reduction. Angewandte Chemie International Edition, 58(52), 18971–18980. Portico. https://doi.org/10.1002/anie.201909312
Ordered Pt3Co Intermetallic Nanoparticles Derived from Metal–Organic Frameworks for Oxygen Reduction
Nano Letters / Jun 06, 2018
Wang, X. X., Hwang, S., Pan, Y.-T., Chen, K., He, Y., Karakalos, S., Zhang, H., Spendelow, J. S., Su, D., & Wu, G. (2018). Ordered Pt3Co Intermetallic Nanoparticles Derived from Metal–Organic Frameworks for Oxygen Reduction. Nano Letters, 18(7), 4163–4171. https://doi.org/10.1021/acs.nanolett.8b00978
Single Cobalt Sites Dispersed in Hierarchically Porous Nanofiber Networks for Durable and High‐Power PGM‐Free Cathodes in Fuel Cells
Advanced Materials / Oct 15, 2020
He, Y., Guo, H., Hwang, S., Yang, X., He, Z., Braaten, J., Karakalos, S., Shan, W., Wang, M., Zhou, H., Feng, Z., More, K. L., Wang, G., Su, D., Cullen, D. A., Fei, L., Litster, S., & Wu, G. (2020). Single Cobalt Sites Dispersed in Hierarchically Porous Nanofiber Networks for Durable and High‐Power PGM‐Free Cathodes in Fuel Cells. Advanced Materials, 32(46). Portico. https://doi.org/10.1002/adma.202003577
3D porous graphitic nanocarbon for enhancing the performance and durability of Pt catalysts: a balance between graphitization and hierarchical porosity
Energy & Environmental Science / Jan 01, 2019
Qiao, Z., Hwang, S., Li, X., Wang, C., Samarakoon, W., Karakalos, S., Li, D., Chen, M., He, Y., Wang, M., Liu, Z., Wang, G., Zhou, H., Feng, Z., Su, D., Spendelow, J. S., & Wu, G. (2019). 3D porous graphitic nanocarbon for enhancing the performance and durability of Pt catalysts: a balance between graphitization and hierarchical porosity. Energy & Environmental Science, 12(9), 2830–2841. https://doi.org/10.1039/c9ee01899a
Surface refinement and electronic properties of graphene layers grown on copper substrate: An XPS, UPS and EELS study
Applied Surface Science / Sep 01, 2011
Siokou, A., Ravani, F., Karakalos, S., Frank, O., Kalbac, M., & Galiotis, C. (2011). Surface refinement and electronic properties of graphene layers grown on copper substrate: An XPS, UPS and EELS study. Applied Surface Science, 257(23), 9785–9790. https://doi.org/10.1016/j.apsusc.2011.06.017
Morphology Control of Carbon-Free Spinel NiCo2O4 Catalysts for Enhanced Bifunctional Oxygen Reduction and Evolution in Alkaline Media
ACS Applied Materials & Interfaces / Dec 15, 2017
Devaguptapu, S. V., Hwang, S., Karakalos, S., Zhao, S., Gupta, S., Su, D., Xu, H., & Wu, G. (2017). Morphology Control of Carbon-Free Spinel NiCo2O4 Catalysts for Enhanced Bifunctional Oxygen Reduction and Evolution in Alkaline Media. ACS Applied Materials & Interfaces, 9(51), 44567–44578. https://doi.org/10.1021/acsami.7b16389
Atomically dispersed single iron sites for promoting Pt and Pt3Co fuel cell catalysts: performance and durability improvements
Energy & Environmental Science / Jan 01, 2021
Qiao, Z., Wang, C., Li, C., Zeng, Y., Hwang, S., Li, B., Karakalos, S., Park, J., Kropf, A. J., Wegener, E. C., Gong, Q., Xu, H., Wang, G., Myers, D. J., Xie, J., Spendelow, J. S., & Wu, G. (2021). Atomically dispersed single iron sites for promoting Pt and Pt3Co fuel cell catalysts: performance and durability improvements. Energy & Environmental Science, 14(9), 4948–4960. https://doi.org/10.1039/d1ee01675j
Atomically Dispersed Single Ni Site Catalysts for Nitrogen Reduction toward Electrochemical Ammonia Synthesis Using N2 and H2O
Small Methods / Feb 05, 2020
Mukherjee, S., Yang, X., Shan, W., Samarakoon, W., Karakalos, S., Cullen, D. A., More, K., Wang, M., Feng, Z., Wang, G., & Wu, G. (2020). Atomically Dispersed Single Ni Site Catalysts for Nitrogen Reduction toward Electrochemical Ammonia Synthesis Using N2 and H2O. Small Methods, 4(6). Portico. https://doi.org/10.1002/smtd.201900821
Engineering Atomically Dispersed FeN4 Active Sites for CO2 Electroreduction
Angewandte Chemie International Edition / Nov 12, 2020
Mohd Adli, N., Shan, W., Hwang, S., Samarakoon, W., Karakalos, S., Li, Y., Cullen, D. A., Su, D., Feng, Z., Wang, G., & Wu, G. (2020). Engineering Atomically Dispersed FeN4 Active Sites for CO2 Electroreduction. Angewandte Chemie International Edition, 60(2), 1022–1032. Portico. https://doi.org/10.1002/anie.202012329
Quaternary FeCoNiMn-Based Nanocarbon Electrocatalysts for Bifunctional Oxygen Reduction and Evolution: Promotional Role of Mn Doping in Stabilizing Carbon
ACS Catalysis / Nov 08, 2017
Gupta, S., Zhao, S., Wang, X. X., Hwang, S., Karakalos, S., Devaguptapu, S. V., Mukherjee, S., Su, D., Xu, H., & Wu, G. (2017). Quaternary FeCoNiMn-Based Nanocarbon Electrocatalysts for Bifunctional Oxygen Reduction and Evolution: Promotional Role of Mn Doping in Stabilizing Carbon. ACS Catalysis, 7(12), 8386–8393. https://doi.org/10.1021/acscatal.7b02949
Dynamically Unveiling Metal–Nitrogen Coordination during Thermal Activation to Design High‐Efficient Atomically Dispersed CoN4 Active Sites
Angewandte Chemie / Mar 10, 2021
He, Y., Shi, Q., Shan, W., Li, X., Kropf, A. J., Wegener, E. C., Wright, J., Karakalos, S., Su, D., Cullen, D. A., Wang, G., Myers, D. J., & Wu, G. (2021). Dynamically Unveiling Metal–Nitrogen Coordination during Thermal Activation to Design High‐Efficient Atomically Dispersed CoN4 Active Sites. Angewandte Chemie, 133(17), 9602–9612. Portico. https://doi.org/10.1002/ange.202017288
Metal–organic framework@silica as a stationary phase sorbent for rapid and cost-effective removal of hexavalent chromium
Journal of Materials Chemistry A / Jan 01, 2018
El-Mehalmey, W. A., Ibrahim, A. H., Abugable, A. A., Hassan, M. H., Haikal, R. R., Karakalos, S. G., Zaki, O., & Alkordi, M. H. (2018). Metal–organic framework@silica as a stationary phase sorbent for rapid and cost-effective removal of hexavalent chromium. Journal of Materials Chemistry A, 6(6), 2742–2751. https://doi.org/10.1039/c7ta08281a
Atomically Dispersed Dual‐Metal Site Catalysts for Enhanced CO2 Reduction: Mechanistic Insight into Active Site Structures
Angewandte Chemie / May 09, 2022
Li, Y., Shan, W., Zachman, M. J., Wang, M., Hwang, S., Tabassum, H., Yang, J., Yang, X., Karakalos, S., Feng, Z., Wang, G., & Wu, G. (2022). Atomically Dispersed Dual‐Metal Site Catalysts for Enhanced CO2 Reduction: Mechanistic Insight into Active Site Structures. Angewandte Chemie, 134(28). Portico. https://doi.org/10.1002/ange.202205632
High-performance ammonia oxidation catalysts for anion-exchange membrane direct ammonia fuel cells
Energy & Environmental Science / Jan 01, 2021
Li, Y., Pillai, H. S., Wang, T., Hwang, S., Zhao, Y., Qiao, Z., Mu, Q., Karakalos, S., Chen, M., Yang, J., Su, D., Xin, H., Yan, Y., & Wu, G. (2021). High-performance ammonia oxidation catalysts for anion-exchange membrane direct ammonia fuel cells. Energy & Environmental Science, 14(3), 1449–1460. https://doi.org/10.1039/d0ee03351k
Atomically dispersed single Ni site catalysts for high-efficiency CO2 electroreduction at industrial-level current densities
Energy & Environmental Science / Jan 01, 2022
Li, Y., Adli, N. M., Shan, W., Wang, M., Zachman, M. J., Hwang, S., Tabassum, H., Karakalos, S., Feng, Z., Wang, G., Li, Y. C., & Wu, G. (2022). Atomically dispersed single Ni site catalysts for high-efficiency CO2 electroreduction at industrial-level current densities. Energy & Environmental Science, 15(5), 2108–2119. https://doi.org/10.1039/d2ee00318j
Single-Iron Site Catalysts with Self-Assembled Dual-size Architecture and Hierarchical Porosity for Proton-Exchange Membrane Fuel Cells
Applied Catalysis B: Environmental / Dec 01, 2020
Zhao, X., Yang, X., Wang, M., Hwang, S., Karakalos, S., Chen, M., Qiao, Z., Wang, L., Liu, B., Ma, Q., Cullen, D. A., Su, D., Yang, H., Zang, H.-Y., Feng, Z., & Wu, G. (2020). Single-Iron Site Catalysts with Self-Assembled Dual-size Architecture and Hierarchical Porosity for Proton-Exchange Membrane Fuel Cells. Applied Catalysis B: Environmental, 279, 119400. https://doi.org/10.1016/j.apcatb.2020.119400
Pt alloy nanoparticles decorated on large-size nitrogen-doped graphene tubes for highly stable oxygen-reduction catalysts
Nanoscale / Jan 01, 2018
Chen, M., Hwang, S., Li, J., Karakalos, S., Chen, K., He, Y., Mukherjee, S., Su, D., & Wu, G. (2018). Pt alloy nanoparticles decorated on large-size nitrogen-doped graphene tubes for highly stable oxygen-reduction catalysts. Nanoscale, 10(36), 17318–17326. https://doi.org/10.1039/c8nr05888a
A Ni-loaded, metal–organic framework–graphene composite as a precursor for in situ electrochemical deposition of a highly active and durable water oxidation nanocatalyst
Chemical Communications / Jan 01, 2019
Hassan, M. H., Soliman, A. B., Elmehelmey, W. A., Abugable, A. A., Karakalos, S. G., Elbahri, M., Hassanien, A., & Alkordi, M. H. (2019). A Ni-loaded, metal–organic framework–graphene composite as a precursor for in situ electrochemical deposition of a highly active and durable water oxidation nanocatalyst. Chemical Communications, 55(1), 31–34. https://doi.org/10.1039/c8cc07120a
Stimuli-Modulated Metal Oxidation States in Photochromic MOFs
Journal of the American Chemical Society / Feb 09, 2022
Martin, C. R., Park, K. C., Leith, G. A., Yu, J., Mathur, A., Wilson, G. R., Gange, G. B., Barth, E. L., Ly, R. T., Manley, O. M., Forrester, K. L., Karakalos, S. G., Smith, M. D., Makris, T. M., Vannucci, A. K., Peryshkov, D. V., & Shustova, N. B. (2022). Stimuli-Modulated Metal Oxidation States in Photochromic MOFs. Journal of the American Chemical Society, 144(10), 4457–4468. https://doi.org/10.1021/jacs.1c11984
Boron-hyperdoped silicon for the selective oxidative dehydrogenation of propane to propylene
Chemical Communications / Jan 01, 2020
Chen, J., Rohani, P., Karakalos, S. G., Lance, M. J., Toops, T. J., Swihart, M. T., & Kyriakidou, E. A. (2020). Boron-hyperdoped silicon for the selective oxidative dehydrogenation of propane to propylene. Chemical Communications, 56(68), 9882–9885. https://doi.org/10.1039/d0cc02822c
Hydrogen generation via ammonia decomposition on highly efficient and stable Ru-free catalysts: approaching complete conversion at 450 °C
Energy & Environmental Science / Jan 01, 2022
Tabassum, H., Mukherjee, S., Chen, J., Holiharimanana, D., Karakalos, S., Yang, X., Hwang, S., Zhang, T., Lu, B., Chen, M., Tang, Z., Kyriakidou, E. A., Ge, Q., & Wu, G. (2022). Hydrogen generation via ammonia decomposition on highly efficient and stable Ru-free catalysts: approaching complete conversion at 450 °C. Energy & Environmental Science, 15(10), 4190–4200. https://doi.org/10.1039/d1ee03730g
Hierarchical Corannulene‐Based Materials: Energy Transfer and Solid‐State Photophysics
Angewandte Chemie / Mar 23, 2017
Rice, A. M., Fellows, W. B., Dolgopolova, E. A., Greytak, A. B., Vannucci, A. K., Smith, M. D., Karakalos, S. G., Krause, J. A., Avdoshenko, S. M., Popov, A. A., & Shustova, N. B. (2017). Hierarchical Corannulene‐Based Materials: Energy Transfer and Solid‐State Photophysics. Angewandte Chemie, 129(16), 4596–4600. Portico. https://doi.org/10.1002/ange.201612199
Structure and chemistry of the solid electrolyte interphase (SEI) on a high capacity conversion-based anode: NiO
Journal of Materials Chemistry A / Jan 01, 2021
Ng, B., Faegh, E., Lateef, S., Karakalos, S. G., & Mustain, W. E. (2021). Structure and chemistry of the solid electrolyte interphase (SEI) on a high capacity conversion-based anode: NiO. Journal of Materials Chemistry A, 9(1), 523–537. https://doi.org/10.1039/d0ta09683k
Methane Combustion Over Ni/CexZr1–xO2 Catalysts: Impact of Ceria/Zirconia Ratio
ChemCatChem / Sep 11, 2020
Chen, J., Carlson, B. D., Toops, T. J., Li, Z., Lance, M. J., Karakalos, S. G., Choi, J., & Kyriakidou, E. A. (2020). Methane Combustion Over Ni/CexZr1–xO2 Catalysts: Impact of Ceria/Zirconia Ratio. ChemCatChem, 12(21), 5558–5568. Portico. https://doi.org/10.1002/cctc.202000947
Mechanistic understanding of support effect on the activity and selectivity of indium oxide catalysts for CO2 hydrogenation
Chemical Engineering Journal / Dec 01, 2021
Regalado Vera, C. Y., Manavi, N., Zhou, Z., Wang, L.-C., Diao, W., Karakalos, S., Liu, B., Stowers, K. J., Zhou, M., Luo, H., & Ding, D. (2021). Mechanistic understanding of support effect on the activity and selectivity of indium oxide catalysts for CO2 hydrogenation. Chemical Engineering Journal, 426, 131767. https://doi.org/10.1016/j.cej.2021.131767
Cs3REIIIGe3O9 (RE = Pr, Nd, and SmYb) and Cs8TbIII2TbIVGe9O27: A Rare Example of a Mixed-Valent Tb(III)/Tb(IV) Oxide
Cs3REIIIGe3O9 (RE = Pr, Nd, and SmYb) and Cs8TbIII2TbIVGe9O27: A Rare Example of a Mixed-Valent Tb(III)/Tb(IV) Oxide. (n.d.). American Chemical Society (ACS). https://doi.org/10.1021/acs.inorgchem.9b01033.s001
Tuning the thermal activation atmosphere breaks the activity–stability trade-off of Fe–N–C oxygen reduction fuel cell catalysts
Nature Catalysis / Dec 05, 2023
Zeng, Y., Li, C., Li, B., Liang, J., Zachman, M. J., Cullen, D. A., Hermann, R. P., Alp, E. E., Lavina, B., Karakalos, S., Lucero, M., Zhang, B., Wang, M., Feng, Z., Wang, G., Xie, J., Myers, D. J., Dodelet, J.-P., & Wu, G. (2023). Tuning the thermal activation atmosphere breaks the activity–stability trade-off of Fe–N–C oxygen reduction fuel cell catalysts. Nature Catalysis, 6(12), 1215–1227. https://doi.org/10.1038/s41929-023-01062-8
Hydrogenation of dimethyl oxalate to ethylene glycol over Cu/KIT-6 catalysts
Catalysis Science & Technology / Jan 01, 2021
Yu, X., Burkholder, M., Karakalos, S. G., Tate, G. L., Monnier, J. R., Gupton, B. F., & Williams, C. T. (2021). Hydrogenation of dimethyl oxalate to ethylene glycol over Cu/KIT-6 catalysts. Catalysis Science & Technology, 11(7), 2403–2413. https://doi.org/10.1039/d0cy02334e
Heterometallic multinuclear nodes directing MOF electronic behavior
Chemical Science / Jan 01, 2020
Ejegbavwo, O. A., Berseneva, A. A., Martin, C. R., Leith, G. A., Pandey, S., Brandt, A. J., Park, K. C., Mathur, A., Farzandh, S., Klepov, V. V., Heiser, B. J., Chandrashekhar, M., Karakalos, S. G., Smith, M. D., Phillpot, S. R., Garashchuk, S., Chen, D. A., & Shustova, N. B. (2020). Heterometallic multinuclear nodes directing MOF electronic behavior. Chemical Science, 11(28), 7379–7389. https://doi.org/10.1039/d0sc03053h
Comparative Spectroscopic Study of Aluminum Nitride Grown by MOCVD in H2 and N2 Reaction Environment
Coatings / Jun 29, 2022
Hasan, S., Jewel, M. U., Karakalos, S. G., Gaevski, M., & Ahmad, I. (2022). Comparative Spectroscopic Study of Aluminum Nitride Grown by MOCVD in H2 and N2 Reaction Environment. Coatings, 12(7), 924. https://doi.org/10.3390/coatings12070924
A Metal‐Organic Framework (MOF)‐Based Multifunctional Cargo Vehicle for Reactive‐Gas Delivery and Catalysis
Angewandte Chemie International Edition / Jan 27, 2022
Kittikhunnatham, P., Leith, G. A., Mathur, A., Naglic, J. K., Martin, C. R., Park, K. C., McCullough, K., Jayaweera, H. D. A. C., Corkill, R. E., Lauterbach, J., Karakalos, S. G., Smith, M. D., Garashchuk, S., Chen, D. A., & Shustova, N. B. (2022). A Metal‐Organic Framework (MOF)‐Based Multifunctional Cargo Vehicle for Reactive‐Gas Delivery and Catalysis. Angewandte Chemie International Edition, 61(12). Portico. https://doi.org/10.1002/anie.202113909
Crowded supported metal atoms on catalytically active supports may compromise intrinsic activity: A case study of dual-site Pt/α-MoC catalysts
Applied Catalysis B: Environmental / Jul 01, 2023
Chukwu, E., Molina, L., Rapp, C., Morales, L., Jin, Z., Karakalos, S., Wang, H., Lee, S., Zachman, M. J., & Yang, M. (2023). Crowded supported metal atoms on catalytically active supports may compromise intrinsic activity: A case study of dual-site Pt/α-MoC catalysts. Applied Catalysis B: Environmental, 329, 122532. https://doi.org/10.1016/j.apcatb.2023.122532
Surveying Iron–Organic Framework TAL-1-Derived Materials in Ligandless Heterogeneous Oxidative Catalytic Transformations of Alkylarenes
Synlett / Jul 03, 2019
Ping, K., Alam, M., Käärik, M., Leis, J., Kongi, N., Järving, I., & Starkov, P. (2019). Surveying Iron–Organic Framework TAL-1-Derived Materials in Ligandless Heterogeneous Oxidative Catalytic Transformations of Alkylarenes. Synlett, 30(13), 1536–1540. https://doi.org/10.1055/s-0037-1611877
Mixed-metal hybrid ultramicroporous material (HUM) precursor to graphene-supported tetrataenite as a highly active and durable NPG catalyst for the OER
Dalton Transactions / Jan 01, 2021
Haikal, R. R., Kumar, A., O’Nolan, D., Kumar, N., Karakalos, S. G., Hassanien, A., Zaworotko, M. J., & Alkordi, M. H. (2021). Mixed-metal hybrid ultramicroporous material (HUM) precursor to graphene-supported tetrataenite as a highly active and durable NPG catalyst for the OER. Dalton Transactions, 50(15), 5311–5317. https://doi.org/10.1039/d0dt04118a
Fabrication and Characterization of Cr-Based Schottky Diode on n-Type 4H-SiC
Materials Science Forum / Mar 01, 2009
Koliakoudakis, C., Dontas, J., Karakalos, S., Kayambaki, M., Ladas, S., Konstantinidis, G., Kennou, S., & Zekentes, K. (2009). Fabrication and Characterization of Cr-Based Schottky Diode on n-Type 4H-SiC. Materials Science Forum, 615–617, 651–654. https://doi.org/10.4028/www.scientific.net/msf.615-617.651
Challenging the Activity-Durability Tradeoff of Fe-N-C Fuel Cell Catalysts via Controlling thermal Activation Atmosphere
Nov 29, 2022
Zeng, Y., Li, C., Li, B., Zachman, M., Alp, E., Karakalos, S., Lucero, M., Zhang, B., Wang, M., Feng, Z., Wang, G., Xie, J., Cullen, D., Myers, D., Dodelet, J.-P., & Wu, G. (2022). Challenging the Activity-Durability Tradeoff of Fe-N-C Fuel Cell Catalysts via Controlling thermal Activation Atmosphere. https://doi.org/10.26434/chemrxiv-2022-g4zj8
The preparation of silica supported, dilute limit PdAu alloys via simultaneous strong electrostatic adsorption
Catalysis Science & Technology / Jan 01, 2023
Dong, A., Shakouri, A., Karakalos, S., Blom, D., Williams, C. T., & Regalbuto, J. R. (2023). The preparation of silica supported, dilute limit PdAu alloys via simultaneous strong electrostatic adsorption. Catalysis Science & Technology, 13(10), 3020–3034. https://doi.org/10.1039/d2cy01662a
Stabilization of Ultrasmall Platinum Nanoparticles by Nitrogen-Doped Carbon: Implications for Catalysis and Electrocatalysis
ACS Applied Nano Materials / Aug 17, 2022
Rahman, F. B. A., Tien, H. N., Colon-Mercado, H., Ganesan, P., Elvington, M. C., Gaillard, J. B., Karakalos, S. G., & Regalbuto, J. R. (2022). Stabilization of Ultrasmall Platinum Nanoparticles by Nitrogen-Doped Carbon: Implications for Catalysis and Electrocatalysis. ACS Applied Nano Materials, 5(8), 10292–10302. https://doi.org/10.1021/acsanm.2c01422
High-Platinum-Content Catalysts on Atomically Dispersed and Nitrogen Coordinated Single Manganese Site Carbons for Heavy-Duty Fuel Cells
Journal of The Electrochemical Society / Mar 01, 2022
Chen, M., Li, C., Zhang, B., Zeng, Y., Karakalos, S., Hwang, S., Xie, J., & Wu, G. (2022). High-Platinum-Content Catalysts on Atomically Dispersed and Nitrogen Coordinated Single Manganese Site Carbons for Heavy-Duty Fuel Cells. Journal of The Electrochemical Society, 169(3), 034510. https://doi.org/10.1149/1945-7111/ac58c7
Atomically Dispersed Dual‐Metal Site Catalysts for Enhanced CO2 Reduction: Mechanistic Insight into Active Site Structures
Angewandte Chemie International Edition / May 09, 2022
Li, Y., Shan, W., Zachman, M. J., Wang, M., Hwang, S., Tabassum, H., Yang, J., Yang, X., Karakalos, S., Feng, Z., Wang, G., & Wu, G. (2022). Atomically Dispersed Dual‐Metal Site Catalysts for Enhanced CO2 Reduction: Mechanistic Insight into Active Site Structures. Angewandte Chemie International Edition, 61(28). Portico. https://doi.org/10.1002/anie.202205632
Structure–property investigations in urea tethered iodinated triphenylamines
Physical Chemistry Chemical Physics / Jan 01, 2022
Hossain, M. S., Ahmed, F., Karakalos, S. G., Smith, M. D., Pant, N., Garashchuk, S., Greytak, A. B., Docampo, P., & Shimizu, L. S. (2022). Structure–property investigations in urea tethered iodinated triphenylamines. Physical Chemistry Chemical Physics, 24(31), 18729–18737. https://doi.org/10.1039/d2cp01856j
Effects of Self-Assembly on the Photogeneration of Radical Cations in Halogenated Triphenylamines
The Journal of Physical Chemistry C / Sep 01, 2021
Hossain, M. S., Sindt, A. J., Goodlett, R. L., Shields, D. J., O’Connor, C. J., Antevska, A., Karakalos, S. G., Smith, M. D., Garashchuk, S., Do, T. D., Gudmundsdottir, A. D., & Shimizu, L. S. (2021). Effects of Self-Assembly on the Photogeneration of Radical Cations in Halogenated Triphenylamines. The Journal of Physical Chemistry C, 125(36), 19991–20002. https://doi.org/10.1021/acs.jpcc.1c04933
Promoting Atomically Dispersed MnN4 Sites via Sulfur Doping for Oxygen Reduction: Unveiling Intrinsic Activity and Degradation in Fuel Cells
ACS Nano / Mar 31, 2021
Guo, L., Hwang, S., Li, B., Yang, F., Wang, M., Chen, M., Yang, X., Karakalos, S. G., Cullen, D. A., Feng, Z., Wang, G., Wu, G., & Xu, H. (2021). Promoting Atomically Dispersed MnN4 Sites via Sulfur Doping for Oxygen Reduction: Unveiling Intrinsic Activity and Degradation in Fuel Cells. ACS Nano, 15(4), 6886–6899. https://doi.org/10.1021/acsnano.0c10637
Single Atomic Iron Site Catalysts via Benign Aqueous Synthesis for Durability Improvement in Proton Exchange Membrane Fuel Cells
Journal of The Electrochemical Society / Apr 01, 2021
Chen, M., Cullen, D. A., Karakalos, S., Lu, X., Cui, J., Kropf, A. J., Mistry, H., He, K., Myers, D. J., & Wu, G. (2021). Single Atomic Iron Site Catalysts via Benign Aqueous Synthesis for Durability Improvement in Proton Exchange Membrane Fuel Cells. Journal of The Electrochemical Society, 168(4), 044501. https://doi.org/10.1149/1945-7111/abf014
Stabilization of Catalytic Surfaces through Core–Shell Structures: Ag–Ir/Al2O3 Case Study
ACS Catalysis / Nov 03, 2020
Parizad, M., Wong, A. P., Reber, A. C., Tengco, J. M. M., Karakalos, S. G., Khanna, S. N., Regalbuto, J. R., & Monnier, J. R. (2020). Stabilization of Catalytic Surfaces through Core–Shell Structures: Ag–Ir/Al2O3 Case Study. ACS Catalysis, 10(22), 13352–13363. https://doi.org/10.1021/acscatal.0c03297
Atomically Dispersed MnN4 Catalysts via Environmentally Benign Aqueous Synthesis for Oxygen Reduction: Mechanistic Understanding of Activity and Stability Improvements
ACS Catalysis / Sep 03, 2020
Chen, M., Li, X., Yang, F., Li, B., Stracensky, T., Karakalos, S., Mukerjee, S., Jia, Q., Su, D., Wang, G., Wu, G., & Xu, H. (2020). Atomically Dispersed MnN4 Catalysts via Environmentally Benign Aqueous Synthesis for Oxygen Reduction: Mechanistic Understanding of Activity and Stability Improvements. ACS Catalysis, 10(18), 10523–10534. https://doi.org/10.1021/acscatal.0c02490
Enhanced Performance of Oxygen-Functionalized Multiwalled Carbon Nanotubes as Support for Pt and Pt–Ru Bimetallic Catalysts for Methanol Electrooxidation
ACS Applied Energy Materials / May 19, 2020
Xiong, W., Mehrabadi, B. A. T., Karakolos, S. G., White, R. D., Shakouri, A., Kasak, P., Zaidi, S. J., Weidner, J. W., Regalbuto, J. R., Colon-Mercado, H., & Monnier, J. R. (2020). Enhanced Performance of Oxygen-Functionalized Multiwalled Carbon Nanotubes as Support for Pt and Pt–Ru Bimetallic Catalysts for Methanol Electrooxidation. ACS Applied Energy Materials, 3(6), 5487–5496. https://doi.org/10.1021/acsaem.0c00477
Low-Temperature Lithium Plating/Corrosion Hazard in Lithium-Ion Batteries: Electrode Rippling, Variable States of Charge, and Thermal and Nonthermal Runaway
ACS Applied Energy Materials / Mar 19, 2020
Ng, B., Coman, P. T., Faegh, E., Peng, X., Karakalos, S. G., Jin, X., Mustain, W. E., & White, R. E. (2020). Low-Temperature Lithium Plating/Corrosion Hazard in Lithium-Ion Batteries: Electrode Rippling, Variable States of Charge, and Thermal and Nonthermal Runaway. ACS Applied Energy Materials, 3(4), 3653–3664. https://doi.org/10.1021/acsaem.0c00130
Ternary PtIrNi Catalysts for Efficient Electrochemical Ammonia Oxidation
ACS Catalysis / Mar 03, 2020
Li, Y., Li, X., Pillai, H. S., Lattimer, J., Mohd Adli, N., Karakalos, S., Chen, M., Guo, L., Xu, H., Yang, J., Su, D., Xin, H., & Wu, G. (2020). Ternary PtIrNi Catalysts for Efficient Electrochemical Ammonia Oxidation. ACS Catalysis, 10(7), 3945–3957. https://doi.org/10.1021/acscatal.9b04670
Enhanced hydrogenation of dimethyl oxalate to ethylene glycol over indium promoted Cu/SiO2
Journal of Catalysis / Dec 01, 2019
Yu, X., Vest, T. A., Gleason-Boure, N., Karakalos, S. G., Tate, G. L., Burkholder, M., Monnier, J. R., & Williams, C. T. (2019). Enhanced hydrogenation of dimethyl oxalate to ethylene glycol over indium promoted Cu/SiO2. Journal of Catalysis, 380, 289–296. https://doi.org/10.1016/j.jcat.2019.10.001
Evolution of steady-state material properties during catalysis: Oxidative coupling of methanol over nanoporous Ag0.03Au0.97
Journal of Catalysis / Dec 01, 2019
Zugic, B., van Spronsen, M. A., Heine, C., Montemore, M. M., Li, Y., Zakharov, D. N., Karakalos, S., Lechner, B. A. J., Crumlin, E., Biener, M. M., Frenkel, A. I., Biener, J., Stach, E. A., Salmeron, M. B., Kaxiras, E., Madix, R. J., & Friend, C. M. (2019). Evolution of steady-state material properties during catalysis: Oxidative coupling of methanol over nanoporous Ag0.03Au0.97. Journal of Catalysis, 380, 366–374. https://doi.org/10.1016/j.jcat.2019.08.041
Tuning the Chemical Environment within the UiO-66-NH2 Nanocages for Charge-Dependent Contaminant Uptake and Selectivity
Inorganic Chemistry / Oct 29, 2019
Ibrahim, A. H., El-Mehalmey, W. A., Haikal, R. R., Safy, M. E. A., Amin, M., Shatla, H. R., Karakalos, S. G., & Alkordi, M. H. (2019). Tuning the Chemical Environment within the UiO-66-NH2 Nanocages for Charge-Dependent Contaminant Uptake and Selectivity. Inorganic Chemistry, 58(22), 15078–15087. https://doi.org/10.1021/acs.inorgchem.9b01611
Non-oxidative dehydrogenation of ethane to ethylene over ZSM-5 zeolite supported iron catalysts
Applied Catalysis B: Environmental / Nov 01, 2019
Wang, L.-C., Zhang, Y., Xu, J., Diao, W., Karakalos, S., Liu, B., Song, X., Wu, W., He, T., & Ding, D. (2019). Non-oxidative dehydrogenation of ethane to ethylene over ZSM-5 zeolite supported iron catalysts. Applied Catalysis B: Environmental, 256, 117816. https://doi.org/10.1016/j.apcatb.2019.117816
Adsorptive Desulfurization of 4,6-Dimethyldibenzothiophene on Bimetallic Mesoporous Y Zeolites: Effects of Cu and Ce Composition and Configuration
Industrial & Engineering Chemistry Research / Aug 19, 2019
Lee, K. X., Wang, H., Karakalos, S., Tsilomelekis, G., & Valla, J. A. (2019). Adsorptive Desulfurization of 4,6-Dimethyldibenzothiophene on Bimetallic Mesoporous Y Zeolites: Effects of Cu and Ce Composition and Configuration. Industrial & Engineering Chemistry Research, 58(39), 18301–18312. https://doi.org/10.1021/acs.iecr.9b02346
Thermodynamics and Electronic Properties of Heterometallic Multinuclear Actinide-Containing Metal–Organic Frameworks with “Structural Memory”
Journal of the American Chemical Society / Jun 20, 2019
Ejegbavwo, O. A., Martin, C. R., Olorunfemi, O. A., Leith, G. A., Ly, R. T., Rice, A. M., Dolgopolova, E. A., Smith, M. D., Karakalos, S. G., Birkner, N., Powell, B. A., Pandey, S., Koch, R. J., Misture, S. T., Loye, H.-C. zur, Phillpot, S. R., Brinkman, K. S., & Shustova, N. B. (2019). Thermodynamics and Electronic Properties of Heterometallic Multinuclear Actinide-Containing Metal–Organic Frameworks with “Structural Memory.” Journal of the American Chemical Society, 141(29), 11628–11640. https://doi.org/10.1021/jacs.9b04737
Cs3REIIIGe3O9 (RE = Pr, Nd, and Sm–Yb) and Cs8TbIII2TbIVGe9O27: A Rare Example of a Mixed-Valent Tb(III)/Tb(IV) Oxide
Inorganic Chemistry / Jun 18, 2019
{"status":"ok","message-type":"journal","message-version":"1.0.0","message":{"last-status-check-time":1711137099280,"counts":{"current-dois":286,"backfile-dois":627,"total-dois":913},"breakdowns":{"dois-by-issued-year":[[2023,133],[2022,108],[2016,65],[2017,62],[2019,56],[2011,52],[2018,48],[2021,47],[2024,45],[2020,39],[2010,36],[2014,34],[2007,34],[2013,32],[2012,32],[2009,32],[2015,31],[2008,27]]},"publisher":"American Institute of Mathematical Sciences","coverage":{"affiliations-current":0.2377622377622378,"similarity-checking-current":0.1223776223776224,"descriptions-current":0.0,"ror-ids-current":0.0,"funders-backfile":0.0,"licenses-backfile":0.0,"funders-current":0.0,"affiliations-backfile":0.0,"resource-links-backfile":0.0,"orcids-backfile":0.0,"update-policies-current":0.0,"ror-ids-backfile":0.0,"orcids-current":0.0,"similarity-checking-backfile":0.9027113237639554,"references-backfile":0.532695374800638,"descriptions-backfile":0.0,"award-numbers-backfile":0.0,"update-policies-backfile":0.0,"licenses-current":0.0,"award-numbers-current":0.0,"abstracts-backfile":0.02073365231259968,"resource-links-current":0.0,"abstracts-current":0.2237762237762238,"references-current":0.451048951048951},"title":"Advances in Mathematics of Communications","subjects":[{"ASJC":2604,"name":"Applied Mathematics"},{"ASJC":2607,"name":"Discrete Mathematics and Combinatorics"},{"ASJC":1705,"name":"Computer Networks and Communications"},{"ASJC":2602,"name":"Algebra and Number Theory"}],"coverage-type":{"all":{"last-status-check-time":1711137099280,"affiliations":0.07439824945295405,"abstracts":0.08424507658643327,"orcids":0.0,"licenses":0.0,"references":0.5065645514223195,"funders":0.0,"similarity-checking":0.6586433260393872,"award-numbers":0.0,"ror-ids":0.0,"update-policies":0.0,"resource-links":0.0,"descriptions":0.0},"backfile":{"last-status-check-time":1711137099280,"affiliations":0.0,"abstracts":0.02073365231259968,"orcids":0.0,"licenses":0.0,"references":0.532695374800638,"funders":0.0,"similarity-checking":0.9027113237639554,"award-numbers":0.0,"ror-ids":0.0,"update-policies":0.0,"resource-links":0.0,"descriptions":0.0},"current":{"last-status-check-time":1711137099280,"affiliations":0.2377622377622378,"abstracts":0.2237762237762238,"orcids":0.0,"licenses":0.0,"references":0.451048951048951,"funders":0.0,"similarity-checking":0.1223776223776224,"award-numbers":0.0,"ror-ids":0.0,"update-policies":0.0,"resource-links":0.0,"descriptions":0.0}},"flags":{"deposits-abstracts-current":true,"deposits-orcids-current":false,"deposits":true,"deposits-affiliations-backfile":false,"deposits-update-policies-backfile":false,"deposits-similarity-checking-backfile":true,"deposits-award-numbers-current":false,"deposits-resource-links-current":false,"deposits-ror-ids-current":false,"deposits-articles":true,"deposits-affiliations-current":true,"deposits-funders-current":false,"deposits-references-backfile":true,"deposits-ror-ids-backfile":false,"deposits-abstracts-backfile":true,"deposits-licenses-backfile":false,"deposits-award-numbers-backfile":false,"deposits-descriptions-current":false,"deposits-references-current":true,"deposits-resource-links-backfile":false,"deposits-descriptions-backfile":false,"deposits-orcids-backfile":false,"deposits-funders-backfile":false,"deposits-update-policies-current":false,"deposits-similarity-checking-current":true,"deposits-licenses-current":false},"ISSN":["1930-5346","1930-5338"],"issn-type":[{"type":"print","value":"1930-5346"},{"type":"electronic","value":"1930-5338"}]}}
Connecting Wires: Photoinduced Electronic Structure Modulation in Metal–Organic Frameworks
Journal of the American Chemical Society / Mar 06, 2019
Dolgopolova, E. A., Galitskiy, V. A., Martin, C. R., Gregory, H. N., Yarbrough, B. J., Rice, A. M., Berseneva, A. A., Ejegbavwo, O. A., Stephenson, K. S., Kittikhunnatham, P., Karakalos, S. G., Smith, M. D., Greytak, A. B., Garashchuk, S., & Shustova, N. B. (2019). Connecting Wires: Photoinduced Electronic Structure Modulation in Metal–Organic Frameworks. Journal of the American Chemical Society, 141(13), 5350–5358. https://doi.org/10.1021/jacs.8b13853
Flux crystal growth of
uranium(v ) containing
oxyfluoride perovskites
Inorganic Chemistry Frontiers / Jan 01, 2019
Juillerat, C. A., Kocevski, V., Morrison, G., Karakalos, S. G., Patil, D., Misture, S. T., Besmann, T. M., & zur Loye, H.-C. (2019). Flux crystal growth of uranium(<scp>v</scp>) containing oxyfluoride perovskites. Inorganic Chemistry Frontiers, 6(11), 3203–3214. https://doi.org/10.1039/c9qi00537d
Large-diameter and heteroatom-doped graphene nanotubes decorated with transition metals as carbon hosts for lithium–sulfur batteries
Journal of Materials Chemistry A / Jan 01, 2019
Ogoke, O., Hwang, S., Hultman, B., Chen, M., Karakalos, S., He, Y., Ramsey, A., Su, D., Alexandridis, P., & Wu, G. (2019). Large-diameter and heteroatom-doped graphene nanotubes decorated with transition metals as carbon hosts for lithium–sulfur batteries. Journal of Materials Chemistry A, 7(21), 13389–13399. https://doi.org/10.1039/c9ta02889g
Crossing the great divide between single-crystal reactivity and actual catalyst selectivity with pressure transients
Nature Catalysis / Nov 05, 2018
Reece, C., Redekop, E. A., Karakalos, S., Friend, C. M., & Madix, Robert. J. (2018). Crossing the great divide between single-crystal reactivity and actual catalyst selectivity with pressure transients. Nature Catalysis, 1(11), 852–859. https://doi.org/10.1038/s41929-018-0167-5
Ambient Oxidation of Ultrasmall Platinum Nanoparticles on Microporous Carbon Catalyst Supports
ACS Applied Nano Materials / Sep 13, 2018
Banerjee, R., Chen, D. A., Karakalos, S., Piedboeuf, M.-L. C., Job, N., & Regalbuto, J. R. (2018). Ambient Oxidation of Ultrasmall Platinum Nanoparticles on Microporous Carbon Catalyst Supports. ACS Applied Nano Materials, 1(10), 5876–5884. https://doi.org/10.1021/acsanm.8b01548
Stack the Bowls: Tailoring the Electronic Structure of Corannulene‐Integrated Crystalline Materials
Angewandte Chemie International Edition / Jul 30, 2018
Rice, A. M., Dolgopolova, E. A., Yarbrough, B. J., Leith, G. A., Martin, C. R., Stephenson, K. S., Heugh, R. A., Brandt, A. J., Chen, D. A., Karakalos, S. G., Smith, M. D., Hatzell, K. B., Pellechia, P. J., Garashchuk, S., & Shustova, N. B. (2018). Stack the Bowls: Tailoring the Electronic Structure of Corannulene‐Integrated Crystalline Materials. Angewandte Chemie International Edition, 57(35), 11310–11315. Portico. https://doi.org/10.1002/anie.201806202
Stack the Bowls: Tailoring the Electronic Structure of Corannulene‐Integrated Crystalline Materials
Angewandte Chemie / Jul 30, 2018
Rice, A. M., Dolgopolova, E. A., Yarbrough, B. J., Leith, G. A., Martin, C. R., Stephenson, K. S., Heugh, R. A., Brandt, A. J., Chen, D. A., Karakalos, S. G., Smith, M. D., Hatzell, K. B., Pellechia, P. J., Garashchuk, S., & Shustova, N. B. (2018). Stack the Bowls: Tailoring the Electronic Structure of Corannulene‐Integrated Crystalline Materials. Angewandte Chemie, 130(35), 11480–11485. Portico. https://doi.org/10.1002/ange.201806202
Aqueous-Phase Hydrogenation of Succinic Acid Using Bimetallic Ir–Re/C Catalysts Prepared by Strong Electrostatic Adsorption
ACS Catalysis / Jun 07, 2018
Keels, J. M., Chen, X., Karakalos, S., Liang, C., Monnier, J. R., & Regalbuto, J. R. (2018). Aqueous-Phase Hydrogenation of Succinic Acid Using Bimetallic Ir–Re/C Catalysts Prepared by Strong Electrostatic Adsorption. ACS Catalysis, 8(7), 6486–6494. https://doi.org/10.1021/acscatal.8b01006
Na2(UO2)(BO3): An All-Uranium(V) Borate Synthesized under Mild Hydrothermal Conditions
Inorganic Chemistry / Apr 02, 2018
Pace, K. A., Kocevski, V., Karakalos, S. G., Morrison, G., Besmann, T., & zur Loye, H.-C. (2018). Na2(UO2)(BO3): An All-Uranium(V) Borate Synthesized under Mild Hydrothermal Conditions. Inorganic Chemistry, 57(8), 4244–4247. https://doi.org/10.1021/acs.inorgchem.8b00487
Improved Capacity Retention of Metal Oxide Anodes in Li‐Ion Batteries: Increasing Intraparticle Electronic Conductivity through Na Inclusion in Mn3O4
ChemElectroChem / May 23, 2018
Palmieri, A., Yazdani, S., Kashfi‐Sadabad, R., Karakalos, S. G., Ng, B., Oliveira, A., Peng, X., Pettes, M. T., & Mustain, W. E. (2018). Improved Capacity Retention of Metal Oxide Anodes in Li‐Ion Batteries: Increasing Intraparticle Electronic Conductivity through Na Inclusion in Mn3O4. ChemElectroChem, 5(15), 2059–2063. Portico. https://doi.org/10.1002/celc.201800358
Liquid phase hydrodeoxygenation of anisole, 4-ethylphenol and benzofuran using Ni, Ru and Pd supported on USY zeolite
Applied Catalysis A: General / Jun 01, 2018
Gamliel, D. P., Karakalos, S., & Valla, J. A. (2018). Liquid phase hydrodeoxygenation of anisole, 4-ethylphenol and benzofuran using Ni, Ru and Pd supported on USY zeolite. Applied Catalysis A: General, 559, 20–29. https://doi.org/10.1016/j.apcata.2018.04.004
Cobalt Doping as a Pathway To Stabilize the Solid-State Conversion Chemistry of Manganese Oxide Anodes in Li-Ion Batteries
The Journal of Physical Chemistry C / Mar 16, 2018
Palmieri, A., Yazdani, S., Kashfi-Sadabad, R., Karakalos, S. G., Pettes, M. T., & Mustain, W. E. (2018). Cobalt Doping as a Pathway To Stabilize the Solid-State Conversion Chemistry of Manganese Oxide Anodes in Li-Ion Batteries. The Journal of Physical Chemistry C, 122(13), 7120–7127. https://doi.org/10.1021/acs.jpcc.8b00403
Monte Carlo Simulations of the Uptake of Chiral Compounds on Solid Surfaces
The Journal of Physical Chemistry B / Apr 28, 2017
Karakalos, S., & Zaera, F. (2017). Monte Carlo Simulations of the Uptake of Chiral Compounds on Solid Surfaces. The Journal of Physical Chemistry B, 122(2), 444–454. https://doi.org/10.1021/acs.jpcb.7b02230
Understanding Uptake of Pt Precursors During Strong Electrostatic Adsorption on Single-Crystal Carbon Surfaces
Topics in Catalysis / Nov 10, 2017
Seuser, G. S., Banerjee, R., Metavarayuth, K., Brandt, A. J., Maddumapatabandi, T. D., Karakalos, S., Lin, Y., Regalbuto, J. R., & Chen, D. A. (2017). Understanding Uptake of Pt Precursors During Strong Electrostatic Adsorption on Single-Crystal Carbon Surfaces. Topics in Catalysis, 61(5–6), 379–388. https://doi.org/10.1007/s11244-017-0872-3
Engineering reduced graphene oxides with enhanced electrochemical properties through multiple-step reductions
Electrochimica Acta / Dec 01, 2017
Wei, M., Qiao, L., Zhang, H., Karakalos, S., Ma, K., Fu, Z., Swihart, M. T., & Wu, G. (2017). Engineering reduced graphene oxides with enhanced electrochemical properties through multiple-step reductions. Electrochimica Acta, 258, 735–743. https://doi.org/10.1016/j.electacta.2017.11.120
Multifaceted Modularity: A Key for Stepwise Building of Hierarchical Complexity in Actinide Metal–Organic Frameworks
Journal of the American Chemical Society / Nov 08, 2017
Dolgopolova, E. A., Ejegbavwo, O. A., Martin, C. R., Smith, M. D., Setyawan, W., Karakalos, S. G., Henager, C. H., zur Loye, H.-C., & Shustova, N. B. (2017). Multifaceted Modularity: A Key for Stepwise Building of Hierarchical Complexity in Actinide Metal–Organic Frameworks. Journal of the American Chemical Society, 139(46), 16852–16861. https://doi.org/10.1021/jacs.7b09496
Pt Immobilization within a Tailored Porous-Organic Polymer–Graphene Composite: Opportunities in the Hydrogen Evolving Reaction
ACS Catalysis / Oct 24, 2017
Soliman, A. B., Hassan, M. H., Huan, T. N., Abugable, A. A., Elmehalmey, W. A., Karakalos, S. G., Tsotsalas, M., Heinle, M., Elbahri, M., Fontecave, M., & Alkordi, M. H. (2017). Pt Immobilization within a Tailored Porous-Organic Polymer–Graphene Composite: Opportunities in the Hydrogen Evolving Reaction. ACS Catalysis, 7(11), 7847–7854. https://doi.org/10.1021/acscatal.7b02246
Catalytic Descriptors for the Design of Ziegler–Natta Catalysts Revealed by the Investigation of the Cl–Ti(0001) Interaction by Density of States Calculations
The Journal of Physical Chemistry C / Sep 20, 2017
Symianakis, E., Karakalos, S., & Ladas, S. (2017). Catalytic Descriptors for the Design of Ziegler–Natta Catalysts Revealed by the Investigation of the Cl–Ti(0001) Interaction by Density of States Calculations. The Journal of Physical Chemistry C, 121(38), 20871–20876. https://doi.org/10.1021/acs.jpcc.7b06980
Structural Differentiation of the Reactivity of Alcohols with Active Oxygen on Au(110)
Topics in Catalysis / Sep 25, 2017
Hiebel, F., Karakalos, S., Xu, Y., Friend, C. M., & Madix, R. J. (2017). Structural Differentiation of the Reactivity of Alcohols with Active Oxygen on Au(110). Topics in Catalysis, 61(5–6), 299–307. https://doi.org/10.1007/s11244-017-0855-4
Tailoring the Oxygen Reduction Activity of Hemoglobin through Immobilization within Microporous Organic Polymer–Graphene Composite
ACS Applied Materials & Interfaces / Jun 27, 2017
Soliman, A. B., Haikal, R. R., Abugable, A. A., Hassan, M. H., Karakalos, S. G., Pellechia, P. J., Hassan, H. H., Yacoub, M. H., & Alkordi, M. H. (2017). Tailoring the Oxygen Reduction Activity of Hemoglobin through Immobilization within Microporous Organic Polymer–Graphene Composite. ACS Applied Materials & Interfaces, 9(33), 27918–27926. https://doi.org/10.1021/acsami.7b06146
Cover Picture: Post‐Synthetic Immobilization of Ni Ions in a Porous‐Organic Polymer‐Graphene Composite for Non‐Noble Metal Electrocatalytic Water Oxidation (ChemCatChem 15/2017)
ChemCatChem / Aug 09, 2017
Soliman, A. B., Hassan, M. H., Abugable, A. A., Karakalos, S. G., & Alkordi, M. H. (2017). Cover Picture: Post‐Synthetic Immobilization of Ni Ions in a Porous‐Organic Polymer‐Graphene Composite for Non‐Noble Metal Electrocatalytic Water Oxidation (ChemCatChem 15/2017). ChemCatChem, 9(15), 2892–2892. Portico. https://doi.org/10.1002/cctc.201701174
Post‐Synthetic Immobilization of Ni Ions in a Porous‐Organic Polymer‐Graphene Composite for Non‐Noble Metal Electrocatalytic Water Oxidation
ChemCatChem / Jul 21, 2017
Soliman, A. B., Hassan, M. H., Abugable, A. A., Karakalos, S. G., & Alkordi, M. H. (2017). Post‐Synthetic Immobilization of Ni Ions in a Porous‐Organic Polymer‐Graphene Composite for Non‐Noble Metal Electrocatalytic Water Oxidation. ChemCatChem, 9(15), 2946–2951. Portico. https://doi.org/10.1002/cctc.201700601
3D polymer hydrogel for high-performance atomic iron-rich catalysts for oxygen reduction in acidic media
Applied Catalysis B: Environmental / Dec 01, 2017
Qiao, Z., Zhang, H., Karakalos, S., Hwang, S., Xue, J., Chen, M., Su, D., & Wu, G. (2017). 3D polymer hydrogel for high-performance atomic iron-rich catalysts for oxygen reduction in acidic media. Applied Catalysis B: Environmental, 219, 629–639. https://doi.org/10.1016/j.apcatb.2017.08.008
Hierarchical Corannulene‐Based Materials: Energy Transfer and Solid‐State Photophysics
Angewandte Chemie International Edition / Mar 23, 2017
Rice, A. M., Fellows, W. B., Dolgopolova, E. A., Greytak, A. B., Vannucci, A. K., Smith, M. D., Karakalos, S. G., Krause, J. A., Avdoshenko, S. M., Popov, A. A., & Shustova, N. B. (2017). Hierarchical Corannulene‐Based Materials: Energy Transfer and Solid‐State Photophysics. Angewandte Chemie International Edition, 56(16), 4525–4529. Portico. https://doi.org/10.1002/anie.201612199
Pillars of assembled pyridyl bis-urea macrocycles: a robust synthon to organize diiodotetrafluorobenzenes
CrystEngComm / Jan 01, 2017
Som, B., Salpage, S. R., Son, J., Gu, B., Karakalos, S. G., Smith, M. D., & Shimizu, L. S. (2017). Pillars of assembled pyridyl bis-urea macrocycles: a robust synthon to organize diiodotetrafluorobenzenes. CrystEngComm, 19(3), 484–491. https://doi.org/10.1039/c6ce02392d
Preferentially Oriented Ag Nanocrystals with Extremely High Activity and Faradaic Efficiency for CO2 Electrochemical Reduction to CO
ACS Applied Materials & Interfaces / Jan 03, 2018
Peng, X., Karakalos, S. G., & Mustain, W. E. (2018). Preferentially Oriented Ag Nanocrystals with Extremely High Activity and Faradaic Efficiency for CO2 Electrochemical Reduction to CO. ACS Applied Materials & Interfaces, 10(2), 1734–1742. https://doi.org/10.1021/acsami.7b16164
Synergism of carbon nanotubes and porous-organic polymers (POPs) in CO2 fixation: One-pot approach for bottom-up assembly of tunable heterogeneous catalyst
Applied Catalysis B: Environmental / Jun 01, 2017
Haikal, R. R., Soliman, A. B., Amin, M., Karakalos, S. G., Hassan, Y. S., Elmansi, A. M., Hafez, I. H., Berber, M. R., Hassanien, A., & Alkordi, M. H. (2017). Synergism of carbon nanotubes and porous-organic polymers (POPs) in CO2 fixation: One-pot approach for bottom-up assembly of tunable heterogeneous catalyst. Applied Catalysis B: Environmental, 207, 347–357. https://doi.org/10.1016/j.apcatb.2017.02.009
Water facilitates oxygen migration on gold surfaces
Physical Chemistry Chemical Physics / Jan 01, 2018
Xu, F., Fampiou, I., O’Connor, C. R., Karakalos, S., Hiebel, F., Kaxiras, E., Madix, R. J., & Friend, C. M. (2018). Water facilitates oxygen migration on gold surfaces. Physical Chemistry Chemical Physics, 20(4), 2196–2204. https://doi.org/10.1039/c7cp06451a
Catalytic production of methyl acrylates by gold-mediated cross coupling of unsaturated aldehydes with methanol
Surface Science / Oct 01, 2016
Karakalos, S., Zugic, B., Stowers, K. J., Biener, M. M., Biener, J., Friend, C. M., & Madix, R. J. (2016). Catalytic production of methyl acrylates by gold-mediated cross coupling of unsaturated aldehydes with methanol. Surface Science, 652, 58–66. https://doi.org/10.1016/j.susc.2016.03.017
Changes in the Enantiomeric Composition of Chiral Mixtures Upon Adsorption on a Non‐Chiral Surface
Angewandte Chemie / Apr 13, 2016
Karakalos, S., Hong, J., & Zaera, F. (2016). Changes in the Enantiomeric Composition of Chiral Mixtures Upon Adsorption on a Non‐Chiral Surface. Angewandte Chemie, 128(21), 6333–6336. Portico. https://doi.org/10.1002/ange.201601549
Active sites for methanol partial oxidation on nanoporous gold catalysts
Journal of Catalysis / Dec 01, 2016
Wang, L.-C., Personick, M. L., Karakalos, S., Fushimi, R., Friend, C. M., & Madix, R. J. (2016). Active sites for methanol partial oxidation on nanoporous gold catalysts. Journal of Catalysis, 344, 778–783. https://doi.org/10.1016/j.jcat.2016.08.012
Changes in the Enantiomeric Composition of Chiral Mixtures Upon Adsorption on a Non‐Chiral Surface
Angewandte Chemie International Edition / Apr 13, 2016
Karakalos, S., Hong, J., & Zaera, F. (2016). Changes in the Enantiomeric Composition of Chiral Mixtures Upon Adsorption on a Non‐Chiral Surface. Angewandte Chemie International Edition, 55(21), 6225–6228. Portico. https://doi.org/10.1002/anie.201601549
Continuous Catalytic Production of Methyl Acrylates from Unsaturated Alcohols by Gold: The Strong Effect of C═C Unsaturation on Reaction Selectivity
ACS Catalysis / Feb 17, 2016
Zugic, B., Karakalos, S., Stowers, K. J., Biener, M. M., Biener, J., Madix, R. J., & Friend, C. M. (2016). Continuous Catalytic Production of Methyl Acrylates from Unsaturated Alcohols by Gold: The Strong Effect of C═C Unsaturation on Reaction Selectivity. ACS Catalysis, 6(3), 1833–1839. https://doi.org/10.1021/acscatal.5b02902
Noncovalent Bonding Controls Selectivity in Heterogeneous Catalysis: Coupling Reactions on Gold
Journal of the American Chemical Society / Nov 11, 2016
Karakalos, S., Xu, Y., Cheenicode Kabeer, F., Chen, W., Rodríguez-Reyes, J. C. F., Tkatchenko, A., Kaxiras, E., Madix, R. J., & Friend, C. M. (2016). Noncovalent Bonding Controls Selectivity in Heterogeneous Catalysis: Coupling Reactions on Gold. Journal of the American Chemical Society, 138(46), 15243–15250. https://doi.org/10.1021/jacs.6b09450
Amplification of Enantioselectivity on Solid Surfaces Using Nonchiral Adsorbates
The Journal of Physical Chemistry C / Jun 04, 2015
Karakalos, S., & Zaera, F. (2015). Amplification of Enantioselectivity on Solid Surfaces Using Nonchiral Adsorbates. The Journal of Physical Chemistry C, 119(24), 13785–13790. https://doi.org/10.1021/acs.jpcc.5b04452
Dependence of the adsorption of chiral compounds on their enantiomeric composition
Surface Science / Nov 01, 2014
Gordon, A. D., Karakalos, S., & Zaera, F. (2014). Dependence of the adsorption of chiral compounds on their enantiomeric composition. Surface Science, 629, 3–10. https://doi.org/10.1016/j.susc.2014.02.003
Enantiospecific Kinetics in Surface Adsorption: Propylene Oxide on Pt(111) Surfaces
The Journal of Physical Chemistry C / Aug 29, 2013
Karakalos, S., Lawton, T. J., Lucci, F. R., Sykes, E. C. H., & Zaera, F. (2013). Enantiospecific Kinetics in Surface Adsorption: Propylene Oxide on Pt(111) Surfaces. The Journal of Physical Chemistry C, 117(36), 18588–18594. https://doi.org/10.1021/jp406495w
Investigation of the Ti/MgCl2 interface on a Si(111) 7 × 7 substrate
The Journal of Chemical Physics / Jun 12, 2012
Karakalos, S., Skala, T., Plekan, O., Ladas, S., Prince, K., Matolin, V., Chab, V., & Siokou, A. (2012). Investigation of the Ti/MgCl2 interface on a Si(111) 7 × 7 substrate. The Journal of Chemical Physics, 136(22). https://doi.org/10.1063/1.4727760
The interfacial properties of MgCl2 thin films grown on Ti(0001)
The Journal of Chemical Physics / Aug 16, 2010
Karakalos, S., Siokou, A., Sutara, F., Skala, T., Vitaliy, F., Ladas, S., Prince, K., Matolin, V., & Chab, V. (2010). The interfacial properties of MgCl2 thin films grown on Ti(0001). The Journal of Chemical Physics, 133(7). https://doi.org/10.1063/1.3473933
The interfacial properties of MgCl2 films grown on a flat SiO2/Si substrate. An XPS and ISS study
Applied Surface Science / Aug 01, 2009
Karakalos, S., Siokou, A., & Ladas, S. (2009). The interfacial properties of MgCl2 films grown on a flat SiO2/Si substrate. An XPS and ISS study. Applied Surface Science, 255(21), 8941–8946. https://doi.org/10.1016/j.apsusc.2009.06.105
Cr/4H‐SiC Schottky contacts investigated by electrical and photoelectron spectroscopy techniques
physica status solidi (a) / Oct 29, 2008
Koliakoudakis, C., Dontas, J., Karakalos, S., Kayambaki, M., Ladas, S., Konstantinidis, G., Zekentes, K., & Kennou, S. (2008). Cr/4H‐SiC Schottky contacts investigated by electrical and photoelectron spectroscopy techniques. Physica Status Solidi (a), 205(11), 2536–2540. Portico. https://doi.org/10.1002/pssa.200780212
Study of the early stages of Cr/4H‐SiC(11‐20) interface formation and its behavior at high temperatures
physica status solidi c / Oct 29, 2008
Dontas, I., Karakalos, S., Ladas, S., & Kennou, S. (2008). Study of the early stages of Cr/4H‐SiC(11‐20) interface formation and its behavior at high temperatures. Physica Status Solidi c, 5(12), 3744–3747. Portico. https://doi.org/10.1002/pssc.200780180
Surface alloying in the Sn/Ni(111) system studied by synchrotron radiation photoelectron valence band spectroscopy and ab-initio density of states calculations
Thin Solid Films / Mar 01, 2008
Karakalos, S., Ladas, S., Janecek, P., Sutara, F., Nehasil, V., Tsud, N., Prince, K., Matolin, V., Chab, V., Papanicolaou, N. I., Dianat, A., & Gross, A. (2008). Surface alloying in the Sn/Ni(111) system studied by synchrotron radiation photoelectron valence band spectroscopy and ab-initio density of states calculations. Thin Solid Films, 516(10), 2962–2965. https://doi.org/10.1016/j.tsf.2007.10.101
The interfacial properties of MgCl2 thin films grown on Si(111)7×7
The Journal of Chemical Physics / Mar 13, 2008
Karakalos, S., Siokou, A., Dracopoulos, V., Sutara, F., Skala, T., Skoda, M., Ladas, S., Prince, K., Matolin, V., & Chab, V. (2008). The interfacial properties of MgCl2 thin films grown on Si(111)7×7. The Journal of Chemical Physics, 128(10). https://doi.org/10.1063/1.2888926
Study of the early stages of Cr/6H-SiC(0001) interface formation
Applied Surface Science / May 01, 2006
Dontas, I., Karakalos, S., Ladas, S., & Kennou, S. (2006). Study of the early stages of Cr/6H-SiC(0001) interface formation. Applied Surface Science, 252(15), 5312–5315. https://doi.org/10.1016/j.apsusc.2005.12.066
The transition from the adsorbed state to a surface alloy in the Sn/Ni(111) system
Surface Science / Sep 01, 2006
Karakalos, S., Kennou, S., Ladas, S., Janecek, P., Sutara, F., Nehasil, V., Fabik, S., Tsud, N., Prince, K., Matolin, V., & Chab, V. (2006). The transition from the adsorbed state to a surface alloy in the Sn/Ni(111) system. Surface Science, 600(18), 4067–4071. https://doi.org/10.1016/j.susc.2006.01.123
Education
University of Patras School of Engineering
PhD, Chemical Engineering / February, 2009
University of Patras School of Engineering
MSc, Chemical Engineering / September, 2005
University of Ioannina School of Sciences and Technology
B.S. , Physics / September, 2003
Experience
Institute for Carbon Management, UCLA
Assistant Director / April, 2022 — September, 2022
University of South Carolina
Research Assistant Professor / July, 2016 — March, 2022
Harvard University
Post-doctoral Associate / January, 2015 — June, 2016
University of California Riverside
Post-doctoral Employee / June, 2011 — December, 2014
FORTH/ICE-HT
Post-doctoral Researcher / February, 2010 — March, 2011
Fralock
Sr Materials Engineer / October, 2022 — Present
Phasma Labs Inc.
Lead Scientist / May — Present
Join Stavros on NotedSource!
Join Now
At NotedSource, we believe that professors, post-docs, scientists and other researchers have deep, untapped knowledge and expertise that can be leveraged to drive innovation within companies. NotedSource is committed to bridging the gap between academia and industry by providing a platform for collaboration with industry and networking with other researchers.
For industry, NotedSource identifies the right academic experts in 24 hours to help organizations build and grow. With a platform of thousands of knowledgeable PhDs, scientists, and industry experts, NotedSource makes connecting and collaborating easy.
For academic researchers such as professors, post-docs, and Ph.D.s, NotedSource provides tools to discover and connect to your colleagues with messaging and news feeds, in addition to the opportunity to be paid for your collaboration with vetted partners.