Work with thought leaders and academic experts in Electrochemistry
Companies can greatly benefit from working with experts in the field of Electrochemistry. These researchers have in-depth knowledge and skills in the study of chemical reactions and processes involving electricity. Here are some ways companies can collaborate with academic researchers in Electrochemistry: 1. Product Development: Electrochemistry experts can contribute to the development of new and improved products, such as batteries, fuel cells, and sensors. Their understanding of electrochemical reactions can help optimize performance and enhance efficiency. 2. Process Optimization: By leveraging their expertise, researchers can assist in optimizing electrochemical processes within manufacturing operations. This can lead to cost savings, improved productivity, and reduced environmental impact. 3. Material Selection: Electrochemistry researchers can provide valuable insights into the selection of materials for specific applications. Their knowledge of electrochemical properties can help identify materials that are corrosion-resistant, have high conductivity, or exhibit desired catalytic behavior. 4. Analytical Techniques: Academic researchers in Electrochemistry are skilled in various analytical techniques used to study electrochemical systems. They can provide expertise in analyzing and interpreting data, helping companies gain a deeper understanding of their electrochemical processes. 5. Problem Solving: Electrochemistry experts are adept at troubleshooting and problem-solving in the field. They can assist companies in identifying and resolving issues related to electrochemical systems, ensuring smooth operations and optimal performance.
Researchers on NotedSource with backgrounds in Electrochemistry include Sanjay Nanda, Keisha Walters, Michael Sebek, Cassondra Brayfield, Ph.D, Edward Elliott, Ph.D., and Aruna Ranaweera.
Keisha Walters
University of Arkansas
Most Relevant Research Expertise
Other Research Expertise (34)
About
Most Relevant Publications (3+)
102 total publications
Janus Magnetic Nanoparticles with a Bicompartmental Polymer Brush Prepared Using Electrostatic Adsorption to Facilitate Toposelective Surface-Initiated ATRP
Langmuir / Jun 04, 2014
Vasquez, E. S., Chu, I.-W., & Walters, K. B. (2014). Janus Magnetic Nanoparticles with a Bicompartmental Polymer Brush Prepared Using Electrostatic Adsorption to Facilitate Toposelective Surface-Initiated ATRP. Langmuir, 30(23), 6858–6866. https://doi.org/10.1021/la500824r
XPS Study on the Use of 3-Aminopropyltriethoxysilane to Bond Chitosan to a Titanium Surface
Langmuir / May 09, 2007
Martin, H. J., Schulz, K. H., Bumgardner, J. D., & Walters, K. B. (2007). XPS Study on the Use of 3-Aminopropyltriethoxysilane to Bond Chitosan to a Titanium Surface. Langmuir, 23(12), 6645–6651. https://doi.org/10.1021/la063284v
Surface Characterization of Linear Low-Density Polyethylene Films Modified with Fluorinated Additives
Langmuir / Jun 05, 2003
Walters, K. B., Schwark, D. W., & Hirt, D. E. (2003). Surface Characterization of Linear Low-Density Polyethylene Films Modified with Fluorinated Additives. Langmuir, 19(14), 5851–5860. https://doi.org/10.1021/la026293m
See Full Profile
Edward Elliott, Ph.D.
Ph.D. Chemist with expertise in nanoparticle synthesis and characterization, medical diagnostics, materials chemistry, additive manufacturing, and development of novel composites.
Most Relevant Research Expertise
Other Research Expertise (15)
About
Most Relevant Publications (2+)
7 total publications
Single-Step Synthesis of Small, Azide-Functionalized Gold Nanoparticles: Versatile, Water-Dispersible Reagents for Click Chemistry
Langmuir / Jun 01, 2017
Elliott, E. W., Ginzburg, A. L., Kennedy, Z. C., Feng, Z., & Hutchison, J. E. (2017). Single-Step Synthesis of Small, Azide-Functionalized Gold Nanoparticles: Versatile, Water-Dispersible Reagents for Click Chemistry. Langmuir, 33(23), 5796–5802. https://doi.org/10.1021/acs.langmuir.7b00632
Subnanometer Control of Mean Core Size during Mesofluidic Synthesis of Small (Dcore < 10 nm) Water-Soluble, Ligand-Stabilized Gold Nanoparticles
Langmuir / Oct 20, 2015
Elliott, E. W., Haben, P. M., & Hutchison, J. E. (2015). Subnanometer Control of Mean Core Size during Mesofluidic Synthesis of Small (Dcore < 10 nm) Water-Soluble, Ligand-Stabilized Gold Nanoparticles. Langmuir, 31(43), 11886–11894. https://doi.org/10.1021/acs.langmuir.5b02419
See Full Profile
Aruna Ranaweera
Professor at University of Kelaniya, PhD(Kyung Hee University, South Korea)
Most Relevant Research Expertise
Other Research Expertise (16)
About
Most Relevant Publications (1+)
30 total publications
Analysis and Experiment of Self‐Powered, Pulse‐Based Energy Harvester Using 400 V FEP‐Based Segmented Triboelectric Nanogenerators and 98.2% Tracking Efficient Power Management IC for Multi‐Functional IoT Applications
Advanced Functional Materials / Feb 24, 2023
Chandrarathna, S. C., Graham, S. A., Ali, M., Ranaweera, A. L. A. K., Karunarathne, M. L., Yu, J. S., & Lee, J. (2023). Analysis and Experiment of Self‐Powered, Pulse‐Based Energy Harvester Using 400 V FEP‐Based Segmented Triboelectric Nanogenerators and 98.2% Tracking Efficient Power Management IC for Multi‐Functional IoT Applications. Advanced Functional Materials, 33(17). Portico. https://doi.org/10.1002/adfm.202213900
See Full Profile
Example Electrochemistry projects
How can companies collaborate more effectively with researchers, experts, and thought leaders to make progress on Electrochemistry?
Development of High-performance Batteries
An Electrochemistry expert can collaborate with a battery manufacturer to develop high-performance batteries with improved energy density and longer lifespan. By optimizing electrode materials and electrolyte compositions, they can enhance battery performance and address challenges related to capacity fade and degradation.
Design of Efficient Fuel Cells
Working with an Electrochemistry researcher, a company can design and optimize fuel cells for various applications, such as automotive and stationary power generation. The researcher can contribute to improving fuel cell efficiency, durability, and cost-effectiveness by exploring novel catalysts, membrane materials, and electrode architectures.
Development of Electrochemical Sensors
An academic researcher in Electrochemistry can collaborate with a sensor manufacturer to develop advanced electrochemical sensors for environmental monitoring, healthcare, or industrial applications. They can design and optimize sensor platforms, select suitable electrode materials, and develop sensitive and selective detection methods.
Optimization of Electroplating Processes
By collaborating with an Electrochemistry expert, a company involved in electroplating can optimize their processes to achieve uniform and high-quality coatings. The researcher can assist in selecting appropriate plating bath compositions, optimizing current densities, and improving deposition rates while minimizing defects and waste.
Investigation of Corrosion Mechanisms
An academic researcher specializing in Electrochemistry can work with a company to investigate corrosion mechanisms and develop corrosion prevention strategies. By studying electrochemical reactions at the metal-electrolyte interface, they can identify factors contributing to corrosion and propose effective mitigation techniques.