Work with thought leaders and academic experts in Biomedical Engineering

Companies can benefit from working with someone whose expertise is in the field of Biomedical Engineering in several ways. These experts can provide innovative solutions to complex problems, conduct research and development for new medical devices, improve existing products, offer technical consulting services, and contribute to regulatory compliance. Additionally, they can bring a fresh perspective to the company's projects, enhance the company's reputation in the healthcare industry, and foster collaborations with academic institutions and research organizations.

Researchers on NotedSource with backgrounds in Biomedical Engineering include John Ormerod, Dr. Sakshi Kabra Malpani, Aruna Ranaweera, David J. Hamilton, PhD, Keisha Walters, Daniel Milej, Ph.D., Mohammad Imran Khan, John M Baust, Ph.D, IQRAM HUSSAIN, Ph.D., Martin Tsui, and Susan Song, MD/PhD.

John Ormerod

Knoxville, Tennessee, United States of America
Magnetics Expert - Principal at JOC LLC - Consultant to the Global Magnetics, Rare Earths and Metals Industries
Most Relevant Research Expertise
Biomedical Engineering
Other Research Expertise (1)
Industrial and Manufacturing Engineering
About
Dr. John Ormerod graduated from the University of Manchester, UK with a BSc, MSc and PhD in Metallurgy in 1975, 1976 and 1978 respectively. He has over forty years of research, product development, and manufacturing experience in the area of permanent magnets and magnetic materials. He has published and presented numerous papers in the field of magnetic materials. He has spent time in Europe working for Phillips and in the USA working for SPS Technologies (Arnold Engineering) in their magnetic materials businesses. In 2002 John was named President of Res Manufacturing in Milwaukee, Wisconsin. Res is a manufacturer of stamped metal components, assemblies and value added services serving diversified industries. They are a major supplier of components and assemblies to Tesla Motors for their Model S and future Model X electric vehicle platforms. He provided expert testimony on issues of invalidity during the recent rare earth magnet ITC investigation No. 337-TA-855 and is currently a technical consultant evaluating prior art for the Rare Earth Permanent Magnet Industry Alliance. In 2015 John founded JOC LLC a consultancy specializing in the magnetics and metals-related industries. He serves on the Advisory Board of Bunting Magnetics Company and is Senior Technology Advisor to Magnet Applications Inc.
Most Relevant Publications (1+)

4 total publications

Fabrication of highly dense isotropic Nd-Fe-B nylon bonded magnets via extrusion-based additive manufacturing

Additive Manufacturing / May 01, 2018

Li, L., Jones, K., Sales, B., Pries, J. L., Nlebedim, I. C., Jin, K., Bei, H., Post, B. K., Kesler, M. S., Rios, O., Kunc, V., Fredette, R., Ormerod, J., Williams, A., Lograsso, T. A., & Paranthaman, M. P. (2018). Fabrication of highly dense isotropic Nd-Fe-B nylon bonded magnets via extrusion-based additive manufacturing. Additive Manufacturing, 21, 495–500. https://doi.org/10.1016/j.addma.2018.04.001

See Full Profile

Dr. Sakshi Kabra Malpani

Redmond, Washington, United States of America
Researcher with 10+ years expertise in Organic Chemistry, Solid Waste Management, Heterogeneous Catalysis.
Research Expertise (6)
Renewable Energy, Sustainability and the Environment
Materials Chemistry
Organic Chemistry
Health, Toxicology and Mutagenesis
Pollution
And 1 more
About
Hello, I am Sakshi Kabra Malpani, with 10+ years of experience as a green, organic chemist and lecturer. My overarching research interests revolve around solid waste management, utilization of industrial and natural wastes in the development of heterogeneous catalysts, and their further utilization in different industrially viable organic transformations, extraction of various useful metal oxides like silica, alumina from such wastes. I favor interdisciplinary approaches to solve the aforesaid issues and have incorporated synthetic green chemistry as well as material science and conventional organic chemistry approaches in my research. Post Ph.D., I continued my research work at my workplaces in the form of different student projects at college and postgraduate levels. I also describe my interest and activities in science communication. Three of my designed catalysts have been patented on my name, my research work got published in peer-reviewed journals and books, also I presented my results at different international and national conferences. My father was a College Lecturer, so, from the early stages of my life, I want to become a teacher, saying teaching is in my DNA. Stepping to freelance consulting job, I would like to use my novel training as both an organic and environmental chemist, to investigate environmental processes on a range of temporal and spatial scales. I understand being a scientist or researcher does not mean just being successful in research. At the same time, one should be excellent in his/her interactions with the community and the students, in his/her role to lead the academic society, and in responsibilities to transform the community and society. To this end, I have been engaged in several volunteer activities, such as a volunteer in National Service Scheme and Teach For India movement, guiding and encouraging students to apply for further studies, research fellowships, competitive exams.

See Full Profile

David J. Hamilton, PhD

Fairfax, Virginia, United States of America
PhD Neuroscience focused on computational modeling of biologically plausible neuronal circuits.
Most Relevant Research Expertise
Biomedical Engineering
Other Research Expertise (5)
Cognitive Neuroscience
Artificial Intelligence
Cellular and Molecular Neuroscience
Modeling and Simulation
Machine Learning
About
David J. Hamilton, PhD Neuroscience, GMU, 2016. His current research focus is Efficient Generative AI leveraging biologically plausible computational circuits and spiking neural networks to implement transformer-based algorithms. Dr. Hamilton has extensive R&D experience in Generative AI and Machine Learning capability development. Specific projects include transformer-based LLM sensor parameter tuning, analytic prediction, Cyber Threat Analysis Platform R&D, US Treasury cyber defense, credit card fraud detection, sensor fusion/analysis, LIDAR signal characterization, and active/passive sonar signal detection/classification. Companies for which David has worked include Intelligent Mission Consulting Services (2020-2023), Northrop Grumman (2004-2020), NeuralTech/CardSystems (1994-2004), Raytheon (1980-1994), and AAI (1977-1980). Earlier in his career, David received his MSEE (1981) from Loyola University, Maryland, and his BSEE (1977) from PSU. He is well published, holds memberships in Society for Neuroscience (SfN), AAAS, IEEE, and continues to maintain his association with GMU as an Affiliate Faculty.
Most Relevant Publications (1+)

14 total publications

An ontological approach to describing neurons and their relationships

Frontiers in Neuroinformatics / Jan 01, 2012

Hamilton, D. J., Shepherd, G. M., Martone, M. E., & Ascoli, G. A. (2012). An ontological approach to describing neurons and their relationships. Frontiers in Neuroinformatics, 6. https://doi.org/10.3389/fninf.2012.00015

See Full Profile

Keisha Walters

Fayetteville, Arkansas, United States of America
University of Arkansas
Most Relevant Research Expertise
Biomedical Engineering
Other Research Expertise (34)
Materials Chemistry
Inorganic Chemistry
Polymers and Plastics
Organic Chemistry
Fluid Flow and Transfer Processes
And 29 more
About
Her research covers a broad range of topics in polymer- and nano-based materials engineering and transport modeling, which has been published in 110+ refereed technical manuscripts and presented at numerous national and international conferences. Dr. Walters’ work has been sponsored by government agencies including NSF, DOE, and DOD, and by industry partners.
Most Relevant Publications (3+)

102 total publications

Bioluminescent magnetic nanoparticles as potential imaging agents for mammalian spermatozoa

Journal of Nanobiotechnology / Mar 17, 2016

Vasquez, E. S., Feugang, J. M., Willard, S. T., Ryan, P. L., & Walters, K. B. (2016). Bioluminescent magnetic nanoparticles as potential imaging agents for mammalian spermatozoa. Journal of Nanobiotechnology, 14(1). https://doi.org/10.1186/s12951-016-0168-y

Fetuin-A adsorption and stabilization of calcium carbonate nanoparticles in a simulated body fluid

Journal of Materials Chemistry B / Jan 01, 2015

Vasquez, E. S., Cunningham, J. L., McMahan, J. B., Simpson, C. L., & Walters, K. B. (2015). Fetuin-A adsorption and stabilization of calcium carbonate nanoparticles in a simulated body fluid. Journal of Materials Chemistry B, 3(31), 6411–6419. https://doi.org/10.1039/c5tb00565e

The effects of water and microstructure on the mechanical properties of bighorn sheep (Ovis canadensis) horn keratin

Acta Biomaterialia / Mar 01, 2011

Trim, M. W., Horstemeyer, M. F., Rhee, H., El Kadiri, H., Williams, L. N., Liao, J., Walters, K. B., McKittrick, J., & Park, S.-J. (2011). The effects of water and microstructure on the mechanical properties of bighorn sheep (Ovis canadensis) horn keratin. Acta Biomaterialia, 7(3), 1228–1240. https://doi.org/10.1016/j.actbio.2010.11.024

See Full Profile

Daniel Milej, Ph.D.

London, Ontario, Canada
Ph.D. in biomedical engineering
Most Relevant Research Expertise
Biomedical Engineering
Other Research Expertise (31)
Biomedical Optics
NIRS
fNIRS
Diffuse Correlation Spectroscopy
CBF
And 26 more
About
Dr. Daniel Milej is a multidisciplinary researcher with experience in medical biophysics, electronics, biocybernetics, biomedical optics and engineering. He is highly knowledgeable and experienced in a range of research techniques. He is currently a Research Associate at the Lawson Health Research Institute, leading the transition of multimodal optical imaging systems from a research setting to clinical use in an ICU and OR environment, working closely with teams of nurses, surgeons, doctors and respiratory therapists. Previously he was a postdoctoral fellow working on developing noninvasive modalities for brain activity monitoring in the Department of Medical Biophysics at Western University. Before that, Dr. Milej worked as a researcher at the Nalecz Institute of Biocybernetics and Biomedical Engineering. He obtained his Ph.D. in 2014 from the Polish Academy of Science, specializing in Electronics and Biomedical Engineering. He received his MSc from the Military University of Technology in 2008.
Most Relevant Publications (8+)

91 total publications

Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol

Journal of Biomedical Optics / Aug 14, 2014

Wabnitz, H., Taubert, D. R., Mazurenka, M., Steinkellner, O., Jelzow, A., Macdonald, R., Milej, D., Sawosz, P., Kacprzak, M., Liebert, A., Cooper, R., Hebden, J., Pifferi, A., Farina, A., Bargigia, I., Contini, D., Caffini, M., Zucchelli, L., Spinelli, L., … Torricelli, A. (2014). Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol. Journal of Biomedical Optics, 19(8), 086010. https://doi.org/10.1117/1.jbo.19.8.086010

Performance assessment of time-domain optical brain imagers, part 2: nEUROPt protocol

Journal of Biomedical Optics / Aug 14, 2014

Wabnitz, H., Jelzow, A., Mazurenka, M., Steinkellner, O., Macdonald, R., Milej, D., Zolek, N., Kacprzak, M., Sawosz, P., Maniewski, R., Liebert, A., Magazov, S., Hebden, J., Martelli, F., Di Ninni, P., Zaccanti, G., Torricelli, A., Contini, D., Re, R., … Pifferi, A. (2014). Performance assessment of time-domain optical brain imagers, part 2: nEUROPt protocol. Journal of Biomedical Optics, 19(8), 086012. https://doi.org/10.1117/1.jbo.19.8.086012

Wavelength-resolved measurements of fluorescence lifetime of indocyanine green

Journal of Biomedical Optics / Jan 01, 2011

Gerega, A., Zolek, N., Soltysinski, T., Milej, D., Sawosz, P., Toczylowska, B., & Liebert, A. (2011). Wavelength-resolved measurements of fluorescence lifetime of indocyanine green. Journal of Biomedical Optics, 16(6), 067010. https://doi.org/10.1117/1.3593386

Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation

Journal of Biomedical Optics / Jan 01, 2011

Liebert, A., Sawosz, P., Milej, D., Kacprzak, M., Weigl, W., Botwicz, M., Mączewska, J., Fronczewska, K., Mayzner-Zawadzka, E., Królicki, L., & Maniewski, R. (2011). Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation. Journal of Biomedical Optics, 16(4), 046011. https://doi.org/10.1117/1.3574018

Optimization of the method for assessment of brain perfusion in humans using contrast-enhanced reflectometry: multidistance time-resolved measurements

Journal of Biomedical Optics / Oct 28, 2015

Milej, D., Janusek, D., Gerega, A., Wojtkiewicz, S., Sawosz, P., Treszczanowicz, J., Weigl, W., & Liebert, A. (2015). Optimization of the method for assessment of brain perfusion in humans using contrast-enhanced reflectometry: multidistance time-resolved measurements. Journal of Biomedical Optics, 20(10), 106013. https://doi.org/10.1117/1.jbo.20.10.106013

Multiwavelength time-resolved detection of fluorescence during the inflow of indocyanine green into the adult’s brain

Journal of Biomedical Optics / Aug 02, 2012

Gerega, A. (2012). Multiwavelength time-resolved detection of fluorescence during the inflow of indocyanine green into the adult’s brain. Journal of Biomedical Optics, 17(8), 087001. https://doi.org/10.1117/1.jbo.17.8.087001

Incorporating early and late-arriving photons to improve the reconstruction of cerebral hemodynamic responses acquired by time-resolved near-infrared spectroscopy

Journal of Biomedical Optics / May 17, 2021

Milej, D., Abdalmalak, A., Rajaram, A., Jhajj, A., Owen, A. M., & St. Lawrence, K. (2021). Incorporating early and late-arriving photons to improve the reconstruction of cerebral hemodynamic responses acquired by time-resolved near-infrared spectroscopy. Journal of Biomedical Optics, 26(05). https://doi.org/10.1117/1.jbo.26.5.056003

Estimation of light detection efficiency for different light guides used in time-resolved near-infrared spectroscopy

Biocybernetics and Biomedical Engineering / Jan 01, 2015

Milej, D., Kruczkowski, M., Kacprzak, M., Sawosz, P., Maniewski, R., & Liebert, A. (2015). Estimation of light detection efficiency for different light guides used in time-resolved near-infrared spectroscopy. Biocybernetics and Biomedical Engineering, 35(4), 227–231. https://doi.org/10.1016/j.bbe.2015.05.003

See Full Profile

Mohammad Imran Khan

College Park, Maryland, United States of America
Postdoctoral Associate at University of Maryland College Park in the Department of Nutrition and Food Science
Most Relevant Research Expertise
Biomedical Engineering
Other Research Expertise (22)
Nanotechology
Wound healing
Infection and Immunity
Bioengineering
Biotechnology
And 17 more
About
Research work is focused on the formulation of nanoparticles encapsulated materials which could be useful for tissue engineering, stem cells, drug delivery and biomechanics to create biologically inspired tissue and organ constructs. Furthermore, 3D material may play significant role in the healing of complex tissues and organs in vitro and in vivo.
Most Relevant Publications (2+)

11 total publications

Facile bio-synthesis of gold nanoparticles by using extract of Hibiscus sabdariffa and evaluation of its cytotoxicity against U87 glioblastoma cells under hyperglycemic condition

Biochemical Engineering Journal / Jan 01, 2016

Mishra, P., Ray, S., Sinha, S., Das, B., Khan, Md. I., Behera, S. K., Yun, S.-I., Tripathy, S. K., & Mishra, A. (2016). Facile bio-synthesis of gold nanoparticles by using extract of Hibiscus sabdariffa and evaluation of its cytotoxicity against U87 glioblastoma cells under hyperglycemic condition. Biochemical Engineering Journal, 105, 264–272. https://doi.org/10.1016/j.bej.2015.09.021

Cytotoxic Potential of Biogenic Zinc Oxide Nanoparticles Synthesized From Swertia chirayita Leaf Extract on Colorectal Cancer Cells

Frontiers in Bioengineering and Biotechnology / Dec 15, 2021

Berehu, H. M., S, A., Khan, M. I., Chakraborty, R., Lavudi, K., Penchalaneni, J., Mohapatra, B., Mishra, A., & Patnaik, S. (2021). Cytotoxic Potential of Biogenic Zinc Oxide Nanoparticles Synthesized From Swertia chirayita Leaf Extract on Colorectal Cancer Cells. Frontiers in Bioengineering and Biotechnology, 9. https://doi.org/10.3389/fbioe.2021.788527

See Full Profile

John M Baust, Ph.D

Ithaca, New York, United States of America
Proven success in delivering best-in-class services across scientific, commercial and education environments.
Most Relevant Research Expertise
Biomedical Engineering
Other Research Expertise (16)
Cell Biology
Biotechnology
Transplantation
Surgery
Management of Technology and Innovation
And 11 more
About
***Proven success in delivering best-in-class services across highly regulated scientific and commercial environments.*** * Resourceful, dynamic, and future-focused professional; equipped with strategic leadership, business, research, and academic expertise with career excellence in conducting in-depth research, leading multi-faceted R&D projects, and developing new products and treatments. * Dedicated, driven self-starter focused on developing innovative life changing technologies and procedures advancing the areas of cancer treatment, regenerative medicine and cell therapy.   * Substantial experience in providing oversight for medical device development, pre-clinical studies, cancer therapy, stem cell preservation, cell therapy, tissue engineering, and organ transplantation, etc. * Astute at establishing solid relationships with stakeholders and industry leaders to drive innovative ideas and lead collaborative efforts in pursuit of accomplishing long-term milestones. * Successful in delivering interactive academic instruction across higher education settings offering captivating lectures on Biology and Entrepreneurship courses in accordance with the organizational mission. * Accredited with authoring, managing, and executing multi-million dollar grants, corporate contracts * Accomplished author of numerous patents and high profile publications to disseminate essential research findings.
Most Relevant Publications (14+)

68 total publications

Molecular Mechanisms of Cellular Demise Associated with Cryopreservation Failure

Cell Preservation Technology / May 01, 2002

Baust, J. M. (2002). Molecular Mechanisms of Cellular Demise Associated with Cryopreservation Failure. Cell Preservation Technology, 1(1), 17–31. https://doi.org/10.1089/15383440260073266

Gene Activation of the Apoptotic Caspase Cascade Following Cryogenic Storage

Cell Preservation Technology / May 01, 2002

Baust, J. M., Van Buskirk, R., & Baust, J. G. (2002). Gene Activation of the Apoptotic Caspase Cascade Following Cryogenic Storage. Cell Preservation Technology, 1(1), 63–80. https://doi.org/10.1089/15383440260073301

Transplantation Diagnostics: A Preliminary Analysis Using Protein Microarray to Determine Kidney Status Prior To and Following Implantation

Cell Preservation Technology / Jun 01, 2004

Baust, J. M., Mathew, A. J., Snyder, K. K., Liu, E. H., van Buskirk, R. G., Hardy, M. A., & Baust, J. G. (2004). Transplantation Diagnostics: A Preliminary Analysis Using Protein Microarray to Determine Kidney Status Prior To and Following Implantation. Cell Preservation Technology, 2(2), 81–90. https://doi.org/10.1089/153834404774101936

Long-Term Function of Cryopreserved Rat Hepatocytes in a Coculture System

Cell Transplantation / Mar 01, 2004

Sugimachi, K., Sosef, M. N., Baust, J. M., Fowler, A., Tompkins, R. G., & Toner, M. (2004). Long-Term Function of Cryopreserved Rat Hepatocytes in a Coculture System. Cell Transplantation, 13(2), 187–195. https://doi.org/10.3727/000000004773301799

Cellular Components of the Coronary Vasculature Exhibit Differential Sensitivity to Low Temperature Insult

Cell Preservation Technology / Dec 01, 2002

Hollister, W. R., Baust, J. M., Van Buskirk, R. G., & Baust, J. G. (2002). Cellular Components of the Coronary Vasculature Exhibit Differential Sensitivity to Low Temperature Insult. Cell Preservation Technology, 1(4), 269–280. https://doi.org/10.1089/15383440260682099

Effect of Cell Substrate Interactions on the Desiccation Behavior of Human Fibroblasts

Cell Preservation Technology / Sep 01, 2004

Baust, J. M., Fowler, A., & Toner, M. (2004). Effect of Cell Substrate Interactions on the Desiccation Behavior of Human Fibroblasts. Cell Preservation Technology, 2(3), 188–197. https://doi.org/10.1089/cpt.2004.2.188

Enhanced Hypothermic Storage of Neonatal Cardiomyocytes

Cell Preservation Technology / Mar 01, 2005

Snyder, K. K., Baust, J. M., Van Buskirk, R. G., & Baust, J. G. (2005). Enhanced Hypothermic Storage of Neonatal Cardiomyocytes. Cell Preservation Technology, 3(1), 61–74. https://doi.org/10.1089/cpt.2005.3.61

Involvement of the Cysteine Protease Calpain Family in Cell Death After Cryopreservation

Cell Preservation Technology / Mar 01, 2006

Robilotto, A. T., Baust, J. M., Buskirk, R. V., & Baust, J. G. (2006). Involvement of the Cysteine Protease Calpain Family in Cell Death After Cryopreservation. Cell Preservation Technology, 4(1), 17–30. https://doi.org/10.1089/cpt.2006.4.17

Bioprocessing

Genetic Engineering & Biotechnology News / Feb 01, 2013

Bioprocessing. (2013). Genetic Engineering & Biotechnology News, 33(3), 28–28. https://doi.org/10.1089/gen.33.3.16

Cardiomyocyte Responses to Thermal Excursions: Implications for Electrophysiological Cardiac Mapping

Cell Preservation Technology / Jun 01, 2007

Snyder, K. K., Baust, J. M., Van Buskirk, R. G., & Baust, J. G. (2007). Cardiomyocyte Responses to Thermal Excursions: Implications for Electrophysiological Cardiac Mapping. Cell Preservation Technology, 5(2), 116–128. https://doi.org/10.1089/cpt.2007.9995

Activation of Mitochondrial-Associated Apoptosis Contributes to Cryopreservation Failure

Cell Preservation Technology / Sep 01, 2007

Baust, J. M., Vogel, M. J., Snyder, K. K., Van Buskirk, R. G., & Baust, J. G. (2007). Activation of Mitochondrial-Associated Apoptosis Contributes to Cryopreservation Failure. Cell Preservation Technology, 5(3), 155–164. https://doi.org/10.1089/cpt.2007.9990

Preliminary Report: Evaluation of Storage Conditions and Cryococktails during Peripheral Blood Mononuclear Cell Cryopreservation

Cell Preservation Technology / Dec 01, 2007

Cosentino, L. M., Corwin, W., Baust, J. M., Diaz-Mayoral, N., Cooley, H., Shao, W., van Buskirk, R., & Baust, J. G. (2007). Preliminary Report: Evaluation of Storage Conditions and Cryococktails during Peripheral Blood Mononuclear Cell Cryopreservation. Cell Preservation Technology, 5(4), 189–204. https://doi.org/10.1089/cpt.2007.9987

Cryopreservation

Organogenesis / Jul 01, 2009

Baust, J. G., Gao, D., & Baust, J. M. (2009). Cryopreservation: An emerging paradigm change. Organogenesis, 5(3), 90–96. https://doi.org/10.4161/org.5.3.10021

Biobanking Expands into Research Services

Genetic Engineering & Biotechnology News / May 01, 2018

Raper, V. (2018). Biobanking Expands into Research Services. Genetic Engineering & Biotechnology News, 38(9), 1, 22–24. https://doi.org/10.1089/gen.38.09.01

See Full Profile

IQRAM HUSSAIN, Ph.D.

New York City, New York, United States of America
Weill Cornell Medicine, Cornell University, NY, USA
Most Relevant Research Expertise
Biomedical Engineering
Other Research Expertise (32)
Biomedical & Medical Physics
AI (Machine & Deep Learning)
Anesthesiology
Sleep Medicine
Human Gait & brain
And 27 more
About
Iqram Hussain works at the Department of Anesthesiology, Weill Cornell Medicine, Cornell University, NY, USA. Earlier, he was a postdoctoral researcher at the Medical Research Center, Department of Biomedical Engineering, Seoul National University. He pursued a Ph.D. degree in Medical Physics from the University of Science and Technology (UST), South Korea. He worked as a Research Associate with the Korea Research Institute of Standards and Science (KRISS), Daejeon, South Korea. He worked on the Knowledgebase Super Brain (KSB) project at the Electronics and Telecommunication Research Institute (ETRI), Daejeon. He received a B.Sc. degree in mechanical engineering from the Khulna University of Engineering & Technology, Bangladesh, in 2007. He has ten years of work experience in power plant operation and maintenance and power plant project management. His research interests include wearable sleep monitoring, neuroscience, medical physics, human factors, and ergonomics. He has experience in healthcare research, project management, power plant operation, and maintenance. He is a reviewer in IEEE Access, Sensors, Applied Sciences, Biomedical Signal Processing and Control, IEEE Transactions, Science of the Total Environment, Neuroscience Informatics, Brain Sciences, etc. He is a guest editor in special issues of several Journals. Website: https://sites.google.com/view/iqram/home
Most Relevant Publications (1+)

43 total publications

Intelligent in-car health monitoring system for elderly drivers

Gerontechnology / Apr 24, 2018

Park, S. J., Hong, S., Kim, D., Seo, Y., & Hussain, I. (2018). Intelligent in-car health monitoring system for elderly drivers. Gerontechnology, 17(s), 186–186. https://doi.org/10.4017/gt.2018.17.s.181.00

See Full Profile

Martin Tsui

San Francisco, California, United States of America
University of California, San Francisco
Most Relevant Research Expertise
Biomedical Engineering
Other Research Expertise (15)
Biochemistry
Structural Biology
Cryo-EM
CRISPR
Molecular Assembly and Interaction
And 10 more
About
Martin Tsui is an accomplished scientist with a strong background in biochemistry. He received his Ph.D. in Molecular Biophysics from Florida State University in 2017, where he conducted research on the structure and function of CRISPR proteins. Prior to that, he obtained his B.S. in Chemistry from the University of California, San Diego in 2012. After completing his graduate studies, Martin founded his own company, Stealth, where he serves as a Founder & CEO. Under his leadership, the company has developed innovative solutions for the biotech industry and has gained recognition for its groundbreaking research. Before starting his company, Martin worked as a Senior Scientist at Amazon, where he applied his expertise in protein biochemistry and CRISPR to improve the company's product development processes and creating new products. He also gained valuable experience as a Postdoctoral Scholar at the University of California, San Francisco and Postdoctoral Fellow at the Van Andel Institute, where he studied cancer proteins, SARS-CoV-2, HIV proteins, and the role of proteins in neurodegenerative diseases, respectively. Martin is a highly driven and passionate individual who is dedicated to advancing the field of biotechnology. His impressive education and diverse experience have equipped him with the skills and knowledge to make significant contributions to the scientific community. He continues to pursue new opportunities to further his research and make a positive impact in the world of science.
Most Relevant Publications (1+)

16 total publications

The Impact of DNA Topology and Guide Length on Target Selection by a Cytosine-Specific Cas9

ACS Synthetic Biology / Mar 20, 2017

Tsui, T. K. M., Hand, T. H., Duboy, E. C., & Li, H. (2017). The Impact of DNA Topology and Guide Length on Target Selection by a Cytosine-Specific Cas9. ACS Synthetic Biology, 6(6), 1103–1113. https://doi.org/10.1021/acssynbio.7b00050

See Full Profile

Susan Song, MD/PhD

Pittsburgh, Pennsylvania, United States of America
Research Assistant Professor in Neuroscience at University of Pittsburgh
Most Relevant Research Expertise
Biomedical Engineering
Other Research Expertise (15)
microglia
white matter
neurodegenerative disease
Cellular and Molecular Neuroscience
Neurology
And 10 more
About
Susan Song, MD/PhD, is a highly accomplished neuroscientist, with extensive education and experience in the field. She received her MD/PhD in Neurology and Neuroscience from Southern Medical University in 2015, where she conducted groundbreaking research on the molecular mechanisms of neurodegenerative diseases. Following this, she completed a post-doctoral fellowship in Neuroscience at the University of Pittsburgh, where she continued to excel in her research and received numerous awards and grants for her work. Dr. Song's expertise lies in studying the underlying causes and potential treatments for various neurological diseases, such as ischemic stroke, traumatic brain injury, glioblastoma, Alzheimer's disease, and multiple sclerosis. She has a deep understanding of the brain and nervous system, and is constantly seeking new ways to unravel the complexities of these diseases. Dr. Song has held several prestigious positions throughout her career, including her current position as Research Assistant Professor at the University of Pittsburgh. She has published numerous articles in top scientific journals and presented her research at international conferences. Her findings have contributed greatly to the field of neurology and have the potential to improve the lives of millions of people suffering from neurological disorders. Overall, Dr. Song is a highly respected and accomplished physician-scientist who is making significant contributions to the field of neurology. With her extensive education, diverse experience, and unwavering dedication to her patients, she is a true leader in the field and a valuable asset to the medical community.
Most Relevant Publications (1+)

20 total publications

Inhibition of Na+/H+ exchanger modulates microglial activation and scar formation following microelectrode implantation

Journal of Neural Engineering / Mar 19, 2021

Dubaniewicz, M., Eles, J. R., Lam, S., Song, S., Cambi, F., Sun, D., Wellman, S. M., & Kozai, T. D. Y. (2021). Inhibition of Na+/H+ exchanger modulates microglial activation and scar formation following microelectrode implantation. Journal of Neural Engineering, 18(4), 045001. https://doi.org/10.1088/1741-2552/abe8f1

See Full Profile

Example Biomedical Engineering projects

How can companies collaborate more effectively with researchers, experts, and thought leaders to make progress on Biomedical Engineering?

Development of a Novel Medical Device

A Biomedical Engineering expert can collaborate with a company to develop a novel medical device that addresses an unmet need in the market. They can contribute their knowledge in areas such as biomaterials, biomechanics, and medical imaging to design and prototype the device, conduct testing and validation, and ensure regulatory compliance.

Improvement of an Existing Medical Device

By collaborating with a Biomedical Engineering researcher, a company can enhance the performance and functionality of an existing medical device. The researcher can analyze the device's design, identify areas for improvement, and propose innovative solutions. They can also conduct usability studies and gather feedback from healthcare professionals to optimize the device's user experience.

Biomechanical Analysis of Sports Equipment

Companies in the sports industry can benefit from collaborating with a Biomedical Engineering expert to perform biomechanical analysis of sports equipment. The researcher can evaluate the performance, safety, and ergonomics of equipment such as helmets, protective gear, and footwear. This collaboration can lead to the development of safer and more efficient sports equipment.

Design of Rehabilitation Technologies

A Biomedical Engineering researcher can collaborate with a company to design and develop rehabilitation technologies. They can apply their expertise in areas such as robotics, prosthetics, and assistive devices to create innovative solutions that improve the quality of life for individuals with disabilities. This collaboration can result in the development of advanced rehabilitation technologies that enhance patient outcomes.

Biomedical Imaging and Analysis

Companies in the healthcare and pharmaceutical industries can collaborate with Biomedical Engineering experts to leverage their knowledge in biomedical imaging and analysis. These experts can assist in the development of imaging techniques, image processing algorithms, and data analysis methods. This collaboration can lead to improved diagnostic accuracy, drug discovery, and personalized medicine.